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Motivations

« California produces about 80% of the A
world’s almonds; Aimond’s acreage
almost doubled since 2005, generating
$5.6B in revenue.

Planting year

1986 - 1990
1991 - 1995
1996 - 2000
2001 - 2005
2006 - 2010
2011 - 2015
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» Large yield variation across the fields,
and vulnerable to climate change and
extreme.

* Degraded ground water quality due to
nitrate leaching.
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improving prediction: key for optimizing : : :
production while reducing N input ......
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Jin et al., Frontiers in Plant Science (2020)
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 Overall, almond yield is highly
dependent on the light interception.

* One percent of increase in light
interception led to an increase of 57.9
Ibs/acre in the potential yield.

* Many orchards did not reach the
potential yield at a given light
interception.



Determinants for the normalized yield by light
iInterception (based on Random Forest)
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FIGURE 3 | Variable importance from the random forest model of yield gap, as measured by the increase in mean-square-error (IncMSE) of predictions when
excluding each variable.
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California’s almond growers face challenges with nitrogen management as new
legislatively mandated nitrogen management strategies for almond have been
implemented. These regulations require that growers apply nitrogen to meet, but
not exceed, the annual N demand for crop and tree growth and nut production.
To accurately predict seasonal nitrogen demand, therefore, growers need to estimate
block-level almond vyield early in the growing season so that timely N management
decisions can be made. However, methods to predict almond yield are not currently
available. To fill this gap, we have developed statistical models using the Stochastic
Gradient Boosting, a machine learning approach, for early season yield projection and



Almond Yield Prediction
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6000

5000 -

4000

3000 -

Predicted Yield

2000

1000 -

0 T T T T T
0 1000 2000 3000 4000 SO000 6000

Ground Truth Yield
Early season prediction by the gradient
boosting tree model agreed well with
the grower reports.

TABLE 2 | Comparison of the performance of five machine learning approaches
for orchard-level almond yield prediction, when using the full set of input variables.

Prediction Machine learning RMSE

time approach R? (kg/ha) RPIQ

Early season  Linear regression 0.58 (0.04) 422 (4.1) 2.19(0.19)
Support vector 0.51 (0.04) 460 (16.5) 2.01(0.16)
regression
Artificial neural network  0.50 (0.05) 474 (26.1) 1.96(0.16)
Random Forest 0.69(0.04) 364 (14.8) 2.55(0.28)
Stochastic gradient 0.71(0.04) 352(15.2) 2.64 (0.33)
boosting

Mid-season Linear regression 0.59 (0.05) 416 (6.1) 2.23(0.22)
Support vector 0.52 (0.04) 453 (15.5) 2.05(0.17)
regression
Artificial neural network  0.48 (0.04) 473 (7.6) 1.96 (0.15)
Random Forest 0.69(0.04) 365(13.9) 2.54(0.27)
Stochastic gradient 0.71 (0.04) 355(12.3) 2.62 (0.29)

boosting

A four-fold cross-validation strategy was used for model building and testing;
both mean values and standard deviations (in parenthesis) of R?, RMSE, and
RPIQ are presented here based on the comparison of the prediction and the
independent testing data.



Impact of Remote Sensing Metrics
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* For mature orchards, canopy cover and Enhanced Vegetation
Index (Landsat) are both positively correlated to the yield.

Zhou et al., Frontiers in Plant Science (2019)



Partial dependence

100 -

-50 1

—100 A

—150 -

Partial dependence

Impact of climate variables
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* Long term mean Tmax during April
~June enhanced the yield.

* Precipitation during blooming time
reduced the almond yield.

* Previous year’s summer Tmean had a
negative impact on the yield.



Summary

e Canopy characteristics, long term climate, and short term weather
affected the yield at individual almond orchard.

* Machine learning approaches, such as random forest and gradient
boosting, provided insights about the importance of key drivers on
almond yield.

* The machine models also predicted the yield reasonably well in both
early and mid-season, and thus can be used to guide the data-driven
N management.



