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● Measurements of k are sparse and difficult 
(experimental uncertainty, variability in forcing, 
other parameters influence air-sea gas transfer)

● Lack of representation of the importance of processes controlling the efficiency of the air-sea gas transfer

The air-sea gas exchange of climate-critical gases (e.g. CO2) is a fundamental 
component of our climate and of the biogeochemical systems within the oceans

● The air-sea gas transfer velocity (k) is typically 
parametrized as a function of wind only 
(e.g. Wanninkhof, 2014)



k can also be parametrized as a function of the dissipation rate of ocean turbulent 
kinetic energy (TKE) at the surface from profilers

where 

●      is a proportionality constant that can be derived 
theoretically (Lamont and Scott, 1970) or measured 
experimentally (Esters et al., 2017)

●      is the kinematic viscosity of water and can be derived from 
surface temperature and salinity (EN4)

●      varies between 1/2 for a wavy, surfactant‐free water 
surface and 2/3 for a flat surface 



Can we develop an empirical model for ε to estimate k? And what for? 

1. Colocate ε profiles with atmospheric and ocean surface hourly fields (wind, evaporation, waves, sensible 
heat transfer) from ERA5

2. Develop a data-driven (aka empirical) model of ε as a function on depth and surface fluxes from ERA5

3. Using the developed model to estimate  ε at the surface and compute a climatology for k via its TKE 
parametrization

Improving estimates of air-sea gas exchange (CO2, O2, DMS, CH4, N2O) and diapycnal fluxes



TKE data (and challenges)

● TKE profiles were obtained from microstructure.ucsd.edu and PANGEA (Fischer et al., 2013) data



TKE data (and challenges)



TKE data (and challenges)

● Sparse spatial sampling which does not cover all 
possible conditions of surface fluxes

● Upper 15 m are less well sampled and have larger 
unstructured noise (e.g. ship-induced turbulence)

● Sampling is very unbalanced between different 
cruises and therefore different conditions of surface 
fluxes



Empirical model
To model ε as a function of depth and surface fluxed we adopted a depth-varying Gaussian Process (GP) 
model 

where

✓ Inference in done in the Bayesian framework using the Integrated Nested Laplace Approximation 
(INLA) and the Stochastic Partial Differential Equation Approach (SPDE)

✓ Final predictions are obtained using Bayesian Model Averaging to account for sampling uncertainties

✓ The model is validated using a 5 fold cross-validation scheme based on the sampling week with 
random downsampling of selected cruises (many observations, fixed location)

✓ Model benchmark: Extreme Gradient Boosting (XGB) 



Model Selection

● The GP model has superior cross validation 
performances based on all selections of  cross-validation 
folds (e.g the label Atlantic-RoW implies training the 
model on data in the Atlantic and testing the model on 
data in the remaining ocean basins)

● Extending the model to account for any monthly or 
spatial residual autocorrelation does not improve the 
model performance 

● Large unstructured noise and poor spatial sampling lead 
to a low explained variance 



Posterior estimates



Given the posterior estimates for k, the dependence on specific drivers in different regions can be 
investigated and compared to existing parametrizations



Takeaways
● The model is able to recover the expected physical dependencies

● Compared to existing parametrizations of k, the wind dependence is weaker and other 
drivers emerge

● Large uncertainties due to large unstructured noise in the data and poor spatial sampling

Next steps

● Build an empirical model of the mixed layer depth using model outputs from NEMO to 
better understand the impact of sampling on the results

● Get more data! If you are aware of existing data sources that were not considered in this 
study, please get in touch!
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