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Gilotti 2013
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Ague 2020

North Atlantic UHP 
terranes
• UHP metamorphism was previously 

interpreted to be absent from Appalachian 
orogen on the eastern North American 
continent

• Only proposed evidence of UHP 
metamorphism is from oriented inclusions 
in garnet from Acadian orogen rocks (Figure 
B, Keller and Ague 2020)

• Hypotheses for the absence of UHP
• Pervasive metamorphic overprinting
• Subduction occurred along a warm and shallow 

subduction zone
• Paleozoic mantle upwelling produced a high-

geothermal gradient under Laurentia

• The question: Did metamorphic rocks in the 
Appalachians  reach UHP conditions? Or 
were peak UHP rocks formed but then 
completely retrogressed?
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Appalachian orogen
• Appalachian orogen is 

composed of a series of 
Paleozoic accreted terranes 
(Figure A)

• Rare high-pressure 
metamorphic rocks 

• TPC is composed 
dominantly  of blueschist, 
eclogite, and metapelite 
(Figure C)

• Taconic age: ~470 Ma 
(Castonguay et al., 2012)

• Interpreted as exhumed 
remnants of Iapetan
oceanic crust and overlying 
sediments

• Previous P-T: 12-14 kbar, 
520-620 oC (Laird et al., 
1993) from garnet –
omphacite pairing

Modified from Gonzalez et al., 2020, Honsberger et al., 2017
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Petrographic analysis and 
inclusions in garnet

• Primary mineral assemblage 
(Figure A-B)

• Garnet, phengite, paragonite, 
quartz, epidote, rutile, Na mineral

• Retrograde mineral assemblage 
(Figure A-B)

• Chlorite, albite, titanite

• Inclusions in garnet (Figure D-E)
• Rutile, apatite, zircon (metamict)
• Chloritoid (only in garnet core-

mantle region
• Epidote
• Quartz (3-200 μm)

• Large quartz inclusions 
associated with fractures

• Small elastically isolated 
inclusions only in the core and 
mantle of garnet
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Electron microprobe 
analysis
• Collected a series of major element WDS 

X-ray maps and spot analyses to create 
quantitative compositional maps (Lanari et 
al., 2014; Figure A)

• Mineral compositions and zoning patterns 
were determined (Figure C)

• Defined two zones in the garnets: core-
mantle, and rim

• Single generation of compositionally 
homogeneous phengite (3.5 Si p.f.u.)

• From these maps we can extract local bulk 
compositions to calculate mineral phase 
equilibrium diagrams

Gonzalez et al., 2020
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Raman spectroscopy
• Inclusions contained in fractured garnet 

porphyroblasts were analyzed by Raman 
spectroscopy for:

• Phase identification/confirmation
• Quartz-in-garnet elastic thermobarometry

• Fractured ~20 μm inclusion targeted for 
Raman spectroscopy (Figures A-B)

• Raman spot analyses
• Coesite Raman bands at 521 cm-1, 270 cm-1, 176 

cm-1 (Figure C)

• Depth profile (0.2 μm step size) to 
approximate the thickness of the inclusion 
(Figure D)

• Raman 2-D (X-Y) mapping of 521 cm-1 band 
(Figure E) with a 0.2 μm step size over a 
20.25 μm2 area

• These results confirm that the inclusion is 
bi-mineralic SiO2 with α-quartz and relict 
coesite and fully 

Gonzalez et al., 2020
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Thermobarometry
• Coesite provides a minimum constraint on peak metamorphism

• Elastic and trace element thermobarometry was used to 
constrain P-T conditions of garnet growth

• Quartz-in-garnet
• Core: Pinc = 6.3 ± 0.2 kbar; Mantle: Pinc = 8.1 ± 0.6 kbar

• Zr-in-rutile
• Average of 16 ± 8 ppm Zr (n = 79)
• Used highest Zr concentration in each zone

• P-T conditions of prograde garnet growth

Modified from Gonzalez et al., 2020
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Garnet growth during subduction 
zone metamorphism

• Current conclusions
• Garnet growth is interpreted to have formed during 

two primary stages
• Prograde metamorphism and garnet growth in 

the blueschist facies
• Peak metamorphism at UHP metamorphic 

conditions
• The first finding of coesite in the Appalachians 

suggests that some Laurentian sediments were 
subducted to UHP metamorphic conditions. 

• P-T data shows that sediments were subducted 
along relatively cold (6 – 8 C/km) geothermal 
gradients 

• Additional questions 
• What is the retrograde/exhumation P-T path of the 

UHP metapelite?
• What are the peak metamorphic conditions preserved 

in other nearby metamorphic units, such as the 
Tillotson Peak mafic blueschist?

Gonzalez et al., 2020
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Ongoing work: Constraining retrograde P-T conditions 
• From the compositional maps, we 

extracted local bulk rock assemblages for 
equilibrium phase modeling in Theriak-
Domino (Figure A; De Capitani and 
Petrakakis 2010, Lanari and Engi 2017) 
that we can use to: 

• Evaluate the prograde P-T path results
• Provide additional constraints on peak 

metamorphism
• Constrain the metamorphic conditions during 

retrograde metamorphism or metamorphic 
overprinting (Figure B)

• Two bulk rock compositions
• Total bulk rock composition (Figure C)
• Fractionated bulk rock composition with 

garnet core-mantle region removed (Figure D)
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Ongoing work: Constraining retrograde P-T conditions 
• Provide additional constraints on peak metamorphism

• Fractionated bulk rock composition
• Used to estimate the mineral assemblage stable at peak 

metamorphic conditions (Figure C, red shaded area)

• Greenschist facies P-T conditions of metamorphic 
overprinting 

• < 8 kbar, 525 oC (Figure C, gray shaded area)
• Due to Salinic or Acadian orogen? 

Chl: chlorite, Ctoid: chloritoid, Czo: epidote, 
Gt: garnet, Fsp: albite, Ilm: ilmenite, Lw: 
lawsonite, Omp: omphacite, Qz: quartz, Rt: 
rutile, Sph: titanite, Stau: staurolite, 
Wm(Ms): phengite, Wm(Pg): paragonite 
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Ongoing work: P-T history of other units
• What were the peak P-T conditions of the TPC 

blueschist? (Figure A)

• Preliminary thermobarometry suggest high-pressure 
history (Figure B)

• Mask calculated in XMapTools of mineral 
assemblage in retrogressed blueschist (Figure C)
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Summary
• Results suggest that evidence for UHP 

metamorphism may only exist as μm-scale 
inclusions in overprinted metamorphic rocks 
in the Appalachian orogen

• Sediments were metamorphosed along 
relatively cool geothermal gradients in the 
blueschist – eclogite metamorphic facies

• Integrated thermobarometry can be used to 
constrain the complex P-T evolution of poly-
metamorphosed rocks in the Northern 
Appalachian orogen.

• Future studies are focused on determining 
the peak metamorphic conditions of the 
nearby mafic blueschist, and constraining 
the P-T conditions of metamorphic 
overprinting of the coesite bearing 
metapelite
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