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Context
Decline of Artic sea ice

September 1979

Rate faster than that forecasted by climate
models (ice extent and averaged thickness)

Sea 1ce-free Arctic :
2005 : Sea ice-free Arctic in 2100 (*)
2012 : Sea ice-free Arctic in 2050 (**)

2019 : Sea ice-free Arctic as early as
2030 (***)

(*) Artic Council and Intergovernmental Panel on Climate Change
Fourth Assessment Report, 2005

(**) World Climate Research Programme Coupled Model
Intercomparison Project Phase V, 2012 , - WA
(***) Screen & aI. 2019 Credit : NASA (National Aeronautics and Space Administration). 2016.
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Existing methods to measure ice properties
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Location of study area
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(a) Location of the seismic array in the Van Mijen fjord near Sveagruva (Svalbard), with (b) a zoom around the array area
in Vallunden Lake, a part of the fjord that is surrounded by a moraine and connected to the fjord by a channel. The gray
scale show land which altitude is less than 25 m. All land above

25 m is shown in white to emphasize the shore line. Moreau & al. 2019
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Direct problem modelisation

ice density: p,, ~— quasi-Scholte
——+ quasi-SHO :

Poisson’s ratio v

k-h (rad)

500

— Low frequency-thickness regime assumed (typically less than ~ 50 m.Hz), allowing asymptotic approximation
for the phase-velocities of the fundamental guided modes [Stein et al, J. Geophys. Res. 1998]
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Direct problem modelisation

ice density: p,, ——+ quasi-Scholte
h Young’s modulus: E — quasi-S0 E
Poisson’s ratio v ~~ quasi-SHO CQ —
0 Jp(1—=v?)

E
2p(1 + v)

CQsHo

— Low frequency-thickness regime assumed (typically less than ~ 50 m.Hz), allowing asymptotic approximation
for the phase-velocities of the fundamental guided modes [Stein et al, J. Geophys. Res. 1998]
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Direct problem modelisation

Eh3

D =
12(1 — v2)

(rigidity bending)
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Calculation of noise correlation
function

. Stack calculation with optimisation

using beamforming to find noise
sources in-line with stations pairs.

Extraction of dispersion curves from
frequency-wavenumber analysis.

. Inversion with Simulated annealing to

find global minimum, followed by
MCMC sampling to find the
probability density function of the
parameters.
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1. Calculation of noise correlation function
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Duration of correlation
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Noise correlation function from 12 hours of continuous noise
recording (black), from the jump (blue)
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2. Stack optimization by beamforming
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3. Extraction of dispersions curves

a) b)
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Dispersion curves for 8 March calculated from stack calculation with optimisation using beamforming (a), stack without
optimisation (b)
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4. Inversion b

Probability density
function of the ice
thickness and
mechanical properties,
estimated from the
MCMC algorithm.

count

count

35 w ‘
ol 925 kg/m3

0
600 700 800 900 1000 1100
Ice density (kg/m3)

0.15 0.2 0.25 0.3 0.35 0.4
Poisson's ratio

y simulated annealing and MCMC sampling

50 w

40

30

count

20+

10 -

3 3.5 4 4.5
Young's modulus (GPa)

0.5 0.55 0.6 0.65
Ice thickness (m)

Serripierri Agathe & al., Grenoble Alpes University, EGU 2021



12—

10 == m e m oo R

Young modulus (GPa)
(=)

0 1
March 1

March 5

March 10

Date

March 15 March 20  March 24

1050 —

1000

950 |-

900

Density (kg/m3)

Upper-bound from litterature-

Lowér-bound from litterature-

800 -

750 —
March 1

March 5

March 10

March 15 March 20 March 24

Date

0.75 —

0.7

o
=
)

Thickness (m)
=
(=)

0.55

0:5. =
March 1

March 5 March 10 March 15 March 20 March 24

Date

0.45 —

T

0.4

0.35

Poisson ratio
(=]
w

0.25

0.2

! 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0.15—
March 1

March 5 March 10 March 15 March 20 March 24

Date
Serripierri Agathe & al., Grenoble Alpes University, EGU 2021



Conclusion

} Thickness, Young modulus and Poisson’s ratio estimations are well constrained and
coherent with litterature

} Thickness is in very good agreement with our onsite ground penetrating radar
surveys and ice drillings

Only the density is less well constrained but the values are within the expected
} intervals for a first ice according to the literature

Next step : application of a new method to estimate sea ice thickness and elastic

properties from passive recordings of the ambient seismic field with a minimal
number of geophones
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