UiO **Department of Geosciences** University of Oslo

Gelati E., Yilmaz Y., Bakke S. J., Tallaksen L. M.

Experimental design

- Forcing: GWSP3, ERA5 (2001-2014)
- Spatial resolution: 0.25° lat/lon
- Model grid-cell runoff evaluated on 214 catchments (area < 10³ km²)

Runoff climatologic regimes

Model match rates of observed runoff regimes

Standardised monthly runoff in matching catchments (median and 10-90 percentile range)

Daily runoff statistics

Conclusions

- ERA5 performs better than GSWP3 in terms of runoff regimes and time correlation, not bias or st.dev. error.
- Next step: test other forcing datasets to assess effects of atmospheric data uncertainty.

UiO **Department of Geosciences** University of Oslo

Gelati E., Yilmaz Y., Bakke S. J., Tallaksen L. M.

Representativeness of selected grid-cells

Slightly over-represented:

- Low latitudes
- Shallow soils
- Rugged terrains

Catchment and grid-cell areas

(model pixel area decreases with latitude)

Areas:

- catchments << model grid-cells
- mismatches apparently not correlated to poorer model performance

UiO Department of Geosciences University of Oslo

Gelati E., Yilmaz Y., Bakke S. J., Tallaksen L. M.

Runoff regimes*

Atlantic

- Summer min:
 - high evapotranspiration,
- low precipitation.
- Autumn-winter max: rainfall.

Inland

- Winter min: snow accumulation. • Spring-summer max: snowmelt.
- Autumn wet period: rainfall.

Baltic

- Summer min: high evapotranspiration, low precipitation.
- Spring max: snowmelt.
- Autumn wet period: rainfall.

Transition Intermediate between Inland, Baltic and Atlantic, grouping unclassified catchments.

*Regime definitions by Bakke et al. (2020), adapted from Gottschalk et al. (1979).

Bakke, S. J., Ionita, M., and Tallaksen, L. M.: The 2018 northern European hydrological drought and its drivers in a historical perspective, Hydrol. Earth Syst. Sci., 24, 5621-5653, https://doi.org/10.5194/hess-24-5621-2020. 2020.

Gottschalk, L., Jensen, J. L., Lundquist, D., Solantie, R., and Tollan, A.: Hydrologic Regions in the Nordic Countries. Hydrology Research, 10(5), 273-286, https://doi.org/10.2166/nh.1979.0010, 1979.

UiO **Department of Geosciences** University of Oslo

Gelati E., Yilmaz Y., Bakke S. J., Tallaksen L. M.

Daily runoff and precipitation correlation with reference datasets

Atmospheric data statistics are computed by comparing forcing with the 2 km Nordic Gridded Climate Dataset (Norwegian Meteorological Institute)

Precipitation occurrence agreement: fraction of days with the same occurrence value (dry/wet) in both datasets

Precipitation amount correlation: excluding days without precipitation

Correlation of simulated runoff and observed discharge

UiO **Department of Geosciences** University of Oslo

Gelati E., Yilmaz Y., Bakke S. J., Tallaksen L. M.

Daily runoff, precipitation and temperature bias with respect to reference datasets

Precipitation bias (%)

- Positive bias in Norway and along Scandinavian Mountains
- ERA5, GSWP3: similar patterns

Temperature bias (°C)

- Positive bias in western Norway
- GSWP3: slightly larger absolute values

Bias (%) of simulated runoff compared to observed discharge

- Positive bias in southern Sweden and south-eastern Norway
- Negative bias in western, central and northern Norway
- ERA5: slightly larger absolute values