Interplay of near surface rift evolution and deep-seated crustal flow New findings from fully quantified crustal-scale analogue models EGU21-1027

Interested...? Join me in the breakout text chat or contact me via timothy.schmid@geo.unibe.ch

Rotational rift settings

"V-shaped basins" ...

- Associated with extension gradients along strike
- Pivoting motion about a Euler pole
- Compressional setting across the Euler pole
- Rotational component on global scales

Introduction

Model set up

- Rotational setting with an extensional and compressional domain
- Brittle/ductile ratio for a cold, intermediate or warm crust
- Pressure-gradient driven viscous flow, stimulated by sand package

Methods

Material properties and model scaling

Granular materials	Quartz sand	Corundum sand	Zirshot	Viscous material	PDMS/corundum mixture
Density (kg/m/³)	1560 (30 cm)	1960 (30 cm) / 1890 (bulk)	2300 (bulk)	Density (kg/m/³)	1600
Grainsize (µm)	60-250	88-175	150-210	Viscosity (Pa s)	1.5E+5
Friction coefficient μ / (°)	0.72 / (36°)	0.78 / (38°)		Stress exponent n	1.05
Strain softening (%)	16	16			
Cohesion (Pa)	48 ±26	55 ± 42			

	General parameters			Brittle upper crust		Ductile lower crust		Dimensionless n		
	Gravitational Acceleration g (m/s²)	Crustal thickness h (m)	Extension velocity v (m/s)	Density $ ho$ (kg/m³)	Cohesion C (Pa)	Density $ ho$ (kg/m³)	Viscosity η (Pa s)	Smoluchowski number R₅	Ramberg number R _m	Reynolds number R₀
Model Nature	9.81 9.81	0.06 3·10 ⁴	2.8·10 ⁻⁶ 1.4·10 ⁻¹⁰	1560 2700	50 5·10 ⁷	1600 2900	1. 5·10 ⁵ 1·10 ²¹	1 1	15-60 16-63	<<1 <<1

 1h
 → 0.88 Ma

 1 cm
 → 5 km

 10 mm/h
 → 6 mm/a

 5 10⁻⁵ s⁻¹
 → 6 10⁻¹⁵ s⁻¹

Deformation monitoring and quantification

- Stereoscopic setup of DSLR cameras (3D stereo DIC)
- Medical XRCT scanner (DVC)

Modified after Adam et al. (2013)

Methods

Surface analysis – Fault activity

Qualitative description - top view analysis

- Rift propagation towards the rotation axis
- First order conjugate normal faults (rift boundary faults)
- Subsequent inward migration forming higher order faults and associated grabens
- Thrusting in the compressional domain
- Extensional domain similar for all models

Surface analysis – Fault activity

- Incremental strain rate indicates fault activity
- Boundary faults develop within 90 minutes
- Intra rift faults accumulate deformation as activity along boundary faults drop
- Final state: three different fault generations active (segment-wise) at the same time due to velocity gradient

Strain-partitioning between competing fault generations

Check out movies ! https://github.com/TimothySchmid/EGU-2021.git

Quantitative description - incremental strain rate

Near-surface deformation

Deep-seated deformation – Vertical displacement

- Increasing vertical motions with increasing R_{DB}
- Zone of subsidence in the compressional domain
- Uplift bulge in front of the topographic step

Surface expression of deep-seated flow?

Check out movies ! https://github.com/TimothySchmid/EGU-2021.git

Near-surface deformation

Deep-seated deformation – Viscous flow

- Models with $R_{DB} = 1$
- Increasing horizontal, rift-parallel flow with increasing pressure gradient
- Pocket of maximum flow around the topographic step (rotation axis)
- Rift-propagation opposing flow below the rift axis

Deep-seated deformation

Channel flow

- Enhanced vertical motions with increasing R_{DB} due to increasing horizontal flow in the viscous part
- Proportionality of μ and H requires lower viscosities for smaller R_{DB} (channel thickness)

$$\mu = \frac{H^3 \rho_c g \Delta t}{3L^2} R_{DB} \approx H$$

Kruse et al. (1991)

Deep-seated deformation

Effective flow regime

D_X Displacement

Combined channel
 flow mode

Poiseuille flow only→ too small

Couette flow only → too small

 $\bar{u} = \frac{u_0}{2}$

Combined channel flow → best fit

$$\overline{u} = -\frac{H^2}{12\mu}\frac{dp}{dx} + \frac{u_0}{2}$$
Gruijic (2006)

				3D :	shear	(%)				
0	10	20	30	40	50	60	70	80	90	100

x-displacement Dx (mm)										
-20	-16	-12	-8	-4	0	4	8	12	16	20

Deep-seated deformation

Effective flow regime

Crustal-scale

Gemmer et al. (2004)

Conclusion

Near-surface features

Rift propagation is accompanied by inward migration of fault activity and competing fault growth of conjugate fault pairs as the result of strain partitioning of bulk extension

Deep-seated features

Tectonic loading above the compressional domain induces lower crustal flow which increases with increasing flow channel thickness

Interaction

Horizontal flow at depth enables vertical and horizontal motions at the surface which is expressed by deformation features Out-of-plane motions play an important role and rifting must be considered as a 3D process