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Key points of this presentation:
• Aim: 

1. Seek a compatibility of  a stable region below the CMB at the present-day and long-term magnetic 
field generation.

2. Look at how uncertainties on CMB heat flow and core thermal conductivity affects such a 
compatibility.

• Approach:
1. Compute the convective flux in thermal and chemical evolution of Earth’s core
2. Stable region: Radial profile of the convective flux < 0
3. Magnetic field: Dipole moment scaled by the convective flux as a function of time > 0

• Results: 
1. Stable region: Need a help of core-mantle chemical interaction.
2. To find magnetic field and stable region simultaneously: 

Modern estimate: 𝑄!"#
$ ~17.5 TW (Present-day CMB heat flow); 𝑘%~212 W/m/K (Thermal conductivity); 𝑑&~30 

km (Thickness of a stable region)
Mantle convection: 𝑄!"#

$ ~10 TW; 𝑘%~112 W/m/K; 𝑑&~75 km

• Implications: 
• A stable region below the CMB cannot be ruled out but seems to be much thinner than we 

thought.



Motivations
• Controversial discussion on the 

stable region at the top of Earth’s 
core

• Question: Can a stable region at 
the top of Earth’s core be found 
from two views: Dynamics and 
evolution?

• How to answer the question –
Develop an assessment scheme 
for emerging a stable region at the 
top of Earth’s core and magnetic 
evolution simultaneously. Mound et al. (2019): Stable region 

beneath the Africa LLSVP.

Irving et al. (2018): A seismic structure may explain 
convective properties without a stable region.



Model image: What we assume?
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- Main concept: One-dimensional thermal and
chemical evolution of Earth’s core.

- Earth’s outer core: Well-mixed convective region
- Chemical interaction

- CMB: Metal-silicate reaction.
- ICB: Add light element release caused by inner 

core growth. 

- Thermal evolution: Follow Labrosse (2015).
- Chemical evolution: Follow Takehiro and Sasaki

(2018) plus incorporating the core-mantle chemical 
coupling.

- Magnetic evolution: A scaling law of strength of 
dipole moment as a function of the convective flux 
(Christensen and Olson, 2006; Aubert et al., 2009; 
Driscoll and Bercovici, 2014). 



Assessment scheme: Definition of the 
stable region below the CMB
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Merit:
This scheme (use heat and mass budgets): More 

precise assessment on emergence of a stable 
region than others (Heat budget assessment)!

Thermal Chemical



How the assessment scheme works 
out?

• Takehiro and Sasaki(2018): 
Light element release by 
the inner core growth – not 
likely to emerge the stable 
region in high 𝑄()*

+

• Point: Use the convective 
flux incl. chemical 
convection

• Improvements in this study: 
Incorporate the core-
mantle chemical coupling.

Takehiro and Sasaki (2018)

𝑄$*+,: Available power of 
thermal convection – Thicker 
stable region (Labrosse, 
2015).
𝑤! and 𝑊!: Actual available 
power of core convection -
More precise estimate of 
thickness of a stable region.



Core-mantle chemical coupling
• Assume that oxygen is a major 

type of light elements of Earth’s 
core.

• Physical process of interaction –
Baro-diffusion effects

• Other major candidates: 
Hydrogen, Silicon Sulphur and 
Carbon – Oxygen gives maximum 
effects of chemical stratification.
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An expected chemical flux near the top of Earth’s core taken 
from Gubbins and Davies (2013).



Long-term generation of magnetic 
field
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Driscoll and Bercovici (2014); Aubert et al. (2009)

Criteria for the long-term magnetic 
field generation:

𝐦𝐢𝐧 𝑴𝒎𝒂𝒈 𝒕 > 𝟎
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Stable region may satisfy the long-
term magnetic field generation

Color shaded 
region: Co-existing 
stable region and 

long-term magnetic 
field

Nakagawa et al. 
(submitted)



Uncertainty: CMB heat flow
• Heat budget and theoretical estimates: 5 to 17.5 TW (Lay et al., 

2008; Labrosse, 2015).
• Thermal conductivity of silicate at the lower mantle condiction: 6 

to 17 TW (Manthilake et al., 2011; Tang et al., 2014; Dekura and 
Tsuchiya, 2019).

• Mantle convection model: 10 TW (Nakagawa and Tackley, 
2010).

• Still very uncertain.
• Will show detailed results for 𝑄()*

+ =10 TW and 17.5 TW.



Additional uncertainty: Core 
conductivity

Hsieh et al. (2020): 
Low (20 W/m/K)

Ohta et al. (2016): High (220 
W/m/K converted from 
electorial resistivity)

Main question: How can the core conductivity affect both an emergence 
of stable region and long-term magnetic field generation? 

Direct measurements Indirect measurements

𝑄$*+, = 𝑄' + 𝑄7 + 𝑄8 + 𝑄9

Total heat flow for 
thermal convection

𝑄9 = 4𝜋𝑏)𝑘$ 1 − 𝐴:
𝑟
𝐿;

) 𝑑𝑇$
𝑑𝑟

𝑑𝑇$
𝑑𝑟 < 0

Isentropic heat flow 

High conductivity – Reducing 
thermal convection
Low conductivity – Enhancing 
thermal convection



Analysis strategy
1. Start with the present-day 

convective structure –
Assessing an emergence of 
stable region at the present 
time.

2. Back-tracing of the thermal, 
chemical and magnetic 
evolution of the Earth’s core 
– Checking if the magnetic 
field can be generated over 
4 billion years or not.

3. Parameter surveys – A 
reasonable range of 𝑄IJK

L

(5 to 20 TW) and 𝑘M (20 to 
220 W/m/k)
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An example of result: a certain thermal 
conductivity case
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𝑘$ = 163 W/m/K

- Compositional convection enhances the core 
convection – Thermal stratification is reduced.
- Thickness of stratification: A position 
changing a sign of total 𝑤! 𝑟 .
- Chemical stratification - 𝑄'01

& >12.5 TW
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Solution regime diagram: Co-existing 
Stable region and long-term magnetic field
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Possible solutions for both magnetic field and stable region

No Magnetic field

Magnetic field

Stable region at the 
top of core

No stable region

A boundary between ‘no-magnetic 
field‘ and ‘magnetic field can 
appear in the stable region at the 
top of core: Long-term magnetic 
field generation can co-exist with 
the stable region.

For getting both stable region 
and long-term magnetic field 
generation (A region between 
green and purple dashed lines) –

Lower limit of 𝑘$~40 W/m/K
Upper limit of 𝑄'01

& ~18.5 TW

112 W/m/K

212 W/m/K



Stable region: Expected thickness 
from 𝒘𝒃 𝒓

𝑄'01
& =10 TW; 𝑘$=112 W/m/K 𝑄'01

& =17.5 TW; 𝑘$=212 W/m/K
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(b) Zoom-up of topmost 86 km
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(b) Zoom-up of topmost 86 km

𝑑#~75 km

𝑑# ~30 km

𝑑#: Thickness of stable region: A location changing a sign of 𝑤! 𝑟 .



Back trace from present to early Earth

Possible range of the present-
day dipole strength

- Inner core age: less than 1 Ga.
- At the onset: Very weak 

magnetic field.
- Possible to co-exist a stably 

stratification at the top of 
Earth’s core (30 to 75 km 
thickness)
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Key points of this presentation:
• Finding from results: 

1. Stable region: Need a help of core-mantle chemical 
interaction.

2. To find magnetic field and stable region simultaneously: 
Modern estimate: 𝑄IJK

L ~17.5 TW (Present-day CMB heat flow); 
𝑘M~212 W/m/K (Thermal conductivity); 𝑑R~30 km (Thickness of a 
stable region)
Mantle convection: 𝑄IJK

L ~10 TW; 𝑘M~112 W/m/K; 𝑑R~75 km

• Implications: 
• A stable region below the CMB cannot be ruled out but 

seems to be much thinner than we thought.


