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Key points of this presentation:

 Aim:
1. Seek a compatibility of a stable region below the CMB at the present-day and long-term magnetic
field generation.
2. Look at how uncertainties on CMB heat flow and core thermal conductivity affects such a
compatibility.
» Approach:
1. Compute the convective flux in thermal and chemical evolution of Earth’s core
2. Stable region: Radial profile of the convective flux <0
3. Magnetic field: Dipole moment scaled by the convective flux as a function of time > 0

* Results:
1. Stable region: Need a help of core-mantle chemical interaction.

2. To find magnetic field and stable region simultaneously:

Modern estimate: QF,,, ~17.5 TW (Present-day CMB heat flow); k.~212 W/m/K (Thermal conductivity); ds~30
km (Thickness of a staBbIe region)

Mantle convection: QF,,;~10 TW; k.~112 W/m/K; ds~75 km

* Implications:
» A stable region below the CMB cannot be ruled out but seems to be much thinner than we
thought.




Motivations

* Controversial discussion on the  s:.
stable region at the top of Earth’s ;7
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* Question: Can a stable regionat U |
: rving et al. (2018): A seismic structure may explain
the tOp of Earth’s core be found convective properties without a stable region.
from two views: Dynamics and
evolution?

4000 10.0 105 11.0 115
Depth (km) Density (g/cm3)

.04 - b
0.04 5

== Global average

* How to answer the question —
Develop an assessment scheme
for emerging a stable region at the
top of Earth’s core and magnetic
evolution simultaneously.
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Mound et al. (2019): Stable region
beneath the Africa LLSVP.




Model image: What we assume?

- Main concept: One-dimensional thermal and
chemical evolution of Earth’s core.

- Earth’s outer core: Well-mixed convective region
- Chemical interaction
- CMB: Metal-silicate reaction.
- ICB: Add light element release caused by inner
core growth.

- Thermal evolution: Follow Labrosse (2015).

- Chemical evolution: Follow Takehiro and Sasaki
(2018) plus incorporating the core-mantle chemical
coupling.

- Magnetic evolution: A scaling law of strength of
dipole moment as a function of the convective flux
(Christensen and Olson, 2006; Aubert et al., 2009;
Driscoll and Bercovici, 2014).




Assessment scheme: Definition of the
stable region below the CMB

Minimum thickness of convective region if
wp(r,t) >0
Maximum thickness of convection region if
Wy(r,t) >0

Wp (T, t) = Wb,S(T, t) + Wblc(r, t)
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Thermal Chemical
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Wb(r, t) = mj 47Tx2Wb(x, t)dx
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Merit:
This scheme (use heat and mass budgets): More
precise assessment on emergence of a stable
region than others (Heat budget assessment)!




How the assessment scheme works

out?

 Takehiro and Sasaki(2018):
Light element release by
the inner core growth — not
likely to emerge the stable

region in high Q5

* Point: Use the convective
flux incl. chemical
convection

* Improvements in this study:
Incorporate the core-
mantle chemical coupling.
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Core-mantle chemical coupling

dX
: : F. = Sicpg — Mc(r) —

« Assume that oxygen is a major rep = Mel) g
type of light elements of Earth’s dX _dX;  dXo _ 4mc2Xo 95+ Scus
core. dt —dt = dt 4 [Pr2p (r)dr

* Physical process of interaction — Sewp = 4mb%p,(b)D, “130 g(b)
Baro-diffusion effects .

» Other major candidates:

Hydrogen, Silicon Sulphur and ol
Carbon — Oxygen gives maximum  ° oo}
effects of chemical stratification.
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An expected chemical flux near the top of Earth’s core taken
from Gubbins and Davies (2013).



Dipole Moment (1022 Am?)

Dipole Moment (1022 Am?)

Long-term generation of magnetic
field
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Driscoll and Bercovici (2014); Aubert et al. (2009)

wy (1, t): Convective flux (Equivalent to work
by buoyancy)
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Stable region may satisfy the long-

term magnetic field generation

Color shaded
region: Co-existing
stable region and
long-term magnetic
field
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Uncertainty: CMB heat flow

* Heat budget and theoretical estimates: 5to 17.5 TW (Lay et al.,
2008; Labrosse, 2015).

* Thermal conductivity of silicate at the lower mantle condiction: 6
to 17 TW (Manthilake et al., 2011; Tang et al., 2014; Dekura and
Tsuchiya, 2019).

* Mantle convection model: 10 TW (Nakagawa and Tackley,
2010).

« Still very uncertain.
» Will show detailed results for Q.,,, =10 TW and 17.5 TW.




Additional uncertainty: Core

conductivity

Main question: How can the core conductivity affect both an emergence
of stable region and long-term magnetic field generation?

Direct measurements

= 0.96'0.04

- ?‘&.’* x X -]
i FeoesSins 7
tw;m.. .p..@'ocd. @

R R R B B R
O 20 40 60 80 100 120

Pressure (GPa)

Hsieh et al. (2020):
Low (20 W/m/K)

N b
o O

= 140 T T L B B
- 120- _
- — m B
IS 'D-ﬁ.

Z 100 |- D--Dd!'_ .
S 80 ?“Et e ’
S oL % - |
2 B o Fe, Si

S

(&]

©

=

o

L

|—

o

Electrical resistivity (L cm)

N

(6)]
\ T

1 1

150

Indirect measurements

212 GPa

125+ : .V
— : This study (Fe)
V : Systematics of ref. 2
100} @ : Shock experiment (ref. 25)
[] : DFT, liquid Fe (ref. 5)
v¢ : DFT, liquid Fe (ref. 6)
75} v
OJ
50 ¥

0
300 1,600 2,900 4,200 5,500 6,800

Temperature (K)

Onhta et al. (2016): High (220
W/m/K converted from

electorial resistivity)

Total heat flow for
thermal convection

Qconv = Qc + QL + Q¢ + s
Isentropic heat flow

dT,
Qs = 4mb2k, (1 Ak< ))dr
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High conductivity — Reducing
thermal convection
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Analysis strategy

Start with the present-day Reference structure of Earth’s core (k. = 163 W/m/K)
convective structure — e P
Assessing an emergence of oo — ’
stable region at the present

time.

Back-tracing of the thermal, B

chemical and magnetic 2 ooo] _ L.

evolution of the Earth’'s core ¢ 2 oo

— Checking if the magnetic

field can be generated over "

4 billion years or not.
Parameter surveys — A
reasonable range of QF,,

(5to 20 TW) and k. (20 to oo a0 zo0 o
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An example of result: a certain thermal
conductivity case Zoom-up upper 500

km radius

kC —_ 163 W/m/K (a) TO'(E":U buoyancy flux »
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Thermal conductivity (W/m/K)

Solution regime diagram: Co-existing
Stable region and Iong-term magnetic field

Stable region at the
top of core

(a) Min. wy(r) at 0 Ga

212 Wim/K

CMB heat flow (TW)

Possible solutions for both magnetic field and stable region
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A boundary between ‘no-magnetic
field* and ‘magnetic field can
appear in the stable region at the
top of core: Long-term magnetic
field generation can co-exist with
the stable region.

For getting both stable region
and long-term magnetic field
generation (A region between
green and purple dashed lines) —

Lower limit of k.~40 W/m/K
Upper limit of QF,,;~18.5 TW
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Stable region: Expected thickness

from w, (1)

d,: Thickness of stable region: A location changing a sign of wy, ().
Q=175 TW; k=212 W/m/K

QP 5=10 TW; k=112 W/m/K
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Back trace from present to early Earth

(a) Inner core size
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Key points of this presentation:

* Finding from results:

1. Stable region: Need a help of core-mantle chemical
interaction.

2. To find magnetic field and stable region simultaneously:

Modern estimate: QIC’MB ~17.5 TW (Present-day CMB heat flow);
k.~212 W/m/K (Thermal conductivity); d,~30 km (Thickness of a
stable region)

Mantle convection: QF,,z~10 TW; k.~112 W/m/K; dg~75 km

 Implications:
* A stable region below the CMB cannot be ruled out but
seems to be much thinner than we thought.



