Modeling a modern-like pCO$_2$
Warm period with two versions
of IPSL AOGCM

Ning Tan 1, Contoux, C. 2, Ramstein, G. 2, Yong Sun 3, Dumas, C. 2, Sepulchre, P. 2, Zhengtang Guo 1

ning.tan@mail.iggcas.ac.cn

1. Institute of Geology and Geophysics, Chinese Academy of Sciences, China
2. Laboratoire des Sciences du Climat et de l’Environnement, France
3. Institute of Atmospheric Physics, Chinese Academy of Sciences, China
Study Background and Methodology

The MPWP (mid-Piacenzian Warm Period, 3.3-3.0 Ma) conditions:
• Warmer than present by 2-3 K, NH polar warm amplification > 10 K
• pCO₂: 400 ppmv (± 50 ppmv)
• SLR: +20 (±10) m higher than present
• GrIS volume: -75% than present; WAIS collapse and EAIS reduced

PlioMIP2 → specific interglacial period (MIS KM5c): similar orbital parameters to the present

Reconstructed land ice and paleogeography (PRISM4) for MIS KM5c(3.205 Ma) Modified from Dowsett et al., 2016

Applied model: French IPSL AOGCMs
1. IPSL-CM5A (Dufresne et al., 2013)
2. IPSL-CM5A2 (Sepulchre et al., 2020)

Objectives:
- MIS KM5c climate conditions under new boundary conditions.
- Climate system response to different forcings during warm conditions

Land sea mask in local grid for PlioMIP2

Experiment design

<table>
<thead>
<tr>
<th>Exp names</th>
<th>Models</th>
<th>Topography & Ice sheet</th>
<th>CO₂ (ppmv)</th>
<th>Integration length (yrs)</th>
<th>Climatologies</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>IPSL-CM5A</td>
<td>Modern</td>
<td>280</td>
<td>2800</td>
<td>Last 100 yrs</td>
</tr>
<tr>
<td>PI v2</td>
<td>IPSL-CM5A2</td>
<td>Modern</td>
<td>280</td>
<td>3000</td>
<td>Last 100 yrs</td>
</tr>
<tr>
<td>Eoi400</td>
<td>IPSL-CM5A</td>
<td>PRISM4</td>
<td>400</td>
<td>650+800</td>
<td>Last 50 yrs</td>
</tr>
<tr>
<td>Eoi400_v2</td>
<td>IPSL-CM5A2</td>
<td>PRISM4</td>
<td>400</td>
<td>1500</td>
<td>Last 50 yrs</td>
</tr>
<tr>
<td>Eoi450_v2</td>
<td>IPSL-CM5A2</td>
<td>PRISM4</td>
<td>450</td>
<td>1500+400</td>
<td>Last 30 yrs</td>
</tr>
<tr>
<td>Eoi350_v2</td>
<td>IPSL-CM5A2</td>
<td>PRISM4</td>
<td>350</td>
<td>1500+400</td>
<td>Last 30 yrs</td>
</tr>
<tr>
<td>Eoi400_v2</td>
<td>IPSL-CM5A</td>
<td>Modern, Ice sheet, PRISM4 topo in other regions</td>
<td>400</td>
<td>1500+400</td>
<td>Last 30 yrs</td>
</tr>
<tr>
<td>Eoi400_v2</td>
<td>IPSL-CM5A2</td>
<td>Modern</td>
<td>400</td>
<td>1500+400</td>
<td>Last 30 yrs</td>
</tr>
</tbody>
</table>

Modified from Haywood et al., 2016

Modified from Dowsett et al., 2016
Main Results and Conclusions

Mean annual surface air temperature anomaly compared to the PI

- PlioMIP2 (IPSL) : MA SAT anomaly : $+ (2.2-2.3 \, ^\circ C)$, MA PRECIP anomaly : $+0.14 \, \text{mm/d}$.
- The closure of the high latitude seaways \rightarrow an enhanced AMOC and northward heat transport Major factor for the increased warming at the high latitudes in PlioMIP2 relative to PlioMIP1.
- PlioMIP2 (IPSL) MDC : more consistent with data but still underestimate strong warming ($>4 \, ^\circ C$) in the data.