Leibniz Centre for Agricultural Landscape Research (ZALF)





# Agricultural N<sub>2</sub>O emission is strongly influenced by N fertilization form and landscape position

Shrijana Vaidya, Reena Macagga, Mogens Thalmann, Nicole Jurisch, Natalia Pehle, Gernot Verch, Michael Sommer, Jürgen Augustin and Mathias Hoffmann





### Nitrous Oxide (N<sub>2</sub>O)....



- Potent greenhouse gas with high global warming potential
- Agriculture accounting 60% of total emission
- Influence mainly by different **fertilizer** form and amount
- Additionally, influence by soil characteristics (eg; pH, SOC, N content, etc)
- Influence of each of these factor on N<sub>2</sub>O emission is limited for erosion-affected arable soils



- To investigate the influence of N-fertilization form on N<sub>2</sub>O emission
- To determine the relative importance of factor like soil characteristics induced by soil erosion on N<sub>2</sub>O emission







### Study Design.....

- **Study area**: Arable landscape in NE of Germany
- **Study period**: 01.05.2010 01.05.2013

| <u>Sites</u>                            | Soil erosion stages | Fertilization form |
|-----------------------------------------|---------------------|--------------------|
| 1. Albic Luvisols (LL)                  | Non-eroded          | 100% ORG           |
| 2. Albic Luvisols (LL)                  | Non-eroded          | 100% MIN           |
| 3. Albic Luvisols (LL)                  | Non-eroded          | 50% MIN+50%ORG     |
| 4. Calcaric Regosols (RZ)               | Extremely eroded    | 100% MIN           |
| 5. Endogleyic<br>Colluvic Regosols (YK) | Deposited           | 100% MIN           |









### Energy crop rotation – identical for all sites



### N<sub>2</sub>O measurements





- Instrument: Opaque closed chambers
- **Sampling**: 20 min interval time
- Measurement frequency: biweekly and frequently (upto 6 days) after fertilization
- Analyse N<sub>2</sub>O concentration: gas chromatography
- N<sub>2</sub>O fluxes: linear regression



### **Results: Temporal dynamics**







#### **Fertilization Form**



### **Results: Temporal dynamics**







### Results: Cumulated N<sub>2</sub>O emission



zalf

### Conclusion



- Our results show that the N<sub>2</sub>O emission exhibited temporal and spatial variability and is mainly influenced by fertilization form and soil erosion stages
- In general, our results suggest a stronger influence of N fertilization form than erosion affected arable soil on  $N_2O$  emission

## Thankyou very much for your time !



zalf

Leibniz Association