Methane (CH₄) sources in Krakow, Poland: insights from isotope analysis

Malika Menoud^{*1}, Carina van der Veen¹, Jaroslaw Necki², Jakub Bartyzel², Barbara Szénási³, Mila Stanisavljevic², Isabelle Pison³, Philippe Bousquet³, and Thomas Röckmann¹

¹ Institute for Marine and Atmospheric research Utrecht (IMAU), Utrecht University, The Netherlands ² Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland ³ Laboratoire des Sciences du Climat et de l'Environnement (LSCE), Université de Versailles Saint-Quentin, Paris, France

m.menoud@uu.nl

Context: CH₄ emissions from coal mines

The Upper Silesia Coal Basin (USCB): 72.5% of European methane emissions related to underground mining and related operations (https:// prtr.eea.europa.eu)

Measurements of CH₄ isotopes

Continuously in Krakow

Discrete samples

-> Source attribution

Modelling of CH₄ isotopes

Use of emission inventory

-> Evaluation of the reported source contributions

All key findings

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 722479.

CH₄ mole fractions and wind directions during the continuous measurements period

$\delta^{\rm 13}{\rm C}$ and $\delta^{\rm 2}{\rm H}$ time series using a continuous flow mass spectrometry system (IRMS)

High precision data obtained at ~1h- resolution over 6.5 months in <u>Krakow</u>

Background:

 χ (CH₄) < 1986.0 ppb (10th lower perc.) δ^{13} C = -47.8 ± 0.16 ‰ VPDB δ^{2} H = -90.0 ± 3.0 ‰ VSMOW

CH₄ enhancements occurring every night

Diurnal cycle: CH₄ accumulation during the night

Regional source characterisation using δ^{13} C and δ^{2} H signatures in CH₄

Samples were taken during mobile surveys in:

- USCB¹ in May 2018, around coal mine shafts
- The surroundings of Krakow: urban (residential & industrial) and rural environments

Source signatures are derived from the sampled plumes (n=57) using the Keeling plot method.

The use of δ^2 H allows us to distinguish fossil fuel and biogenic related sources

δ^{13} C allows us to distinguish between the types of fossil fuel sources

Coal mines average $\delta^{13}C = -51 \%$

Natural gas average $\delta^{13}C = -48.5 \%$

Compare with time series

¹Upper Silesia Coal Basin

-30

Source attribution using δ^{13} C and δ^{2} H signatures in CH₄

Source signatures are derived from the **time series** measurements (n=114 peaks), applying the Keeling plot method.

Average $\delta^{13}C = -48.3 \pm 2.9 \%$ VPDB

 $\delta^{2}H = -204 \pm 27 \% \text{ VSMOW}$

They are compared with ranges of values for the different sources sampled in the surroundings, and verified by literature values.

Fossil fuel related CH₄ emissions were the main contributor

-> Wind directions point at Silesian coal mines, but the use of natural gas in the urban area of Krakow is also an important source.

See sample signatures

Modelling of $\delta^{\rm 13}{\rm C}$ and $\delta^{\rm 2}{\rm H}$ using the CHIMERE atmospheric transport model

Horizontal resolution of 0.1° x 0.1° in a domain covering Poland and nearby countries.

Use of EDGAR (Emission Database for Global Atmospheric Research) v5.0.

With source isotopic signatures assigned to 7 source categories:

	d ¹³ C [‰]	d²H [‰]
Agriculture	-63	-359
Waste	-51.6	-299
Fossil fuels -coal	-51	-192
Fossil fuels -gas	-48.5	-194
Non-industrial combustion	-32.1	-185
Other anthropogenic*	-49.3	-193
Wetlands	-73.2	-323

* Mainly industry & transport

Model performances for time series of CH₄ mole fractions

Overall χ (CH₄) are under-estimated in the model Root mean square error (RMSE) = 164.4 ppb

Before Nov. 15th, 2018 (fall):

Better agreement because of the more regular pattern in CH₄ enhancements.

After Nov. 15th (winter): Mismatches in the timing of CH₄ enhancements

δ^{13} C and δ^{2} H isotopic signatures in CH₄, for all peaks derived from both observed and modelled time series

- The model does not fully reproduce the observed variability of isotopic signatures, caused by secondary processes \bullet related to transport (diffusion, oxidation, ...). To assign one fixed signature value to a reduced number of source categories is the main cause for this discrepancy.
- The under-estimated emissions must be of relatively enriched sources in both δ^{13} C and δ^{2} H.

Use of fossil fuel (distribution/combustion) might be <u>under-estimated</u> in the inventory

Zoom-in: November 2018

Single pollution event, different from the diurnal cycle -> lsotopes suggest coal mining emissions

Eastern winds, at low speeds, reflects **CH**₄ **emissions** within the urban area of Krakow

-> Relatively enriched δ^{13} C in CH₄

Local emissions likely dominated by the use of fossil fuel (natural gas network, power generation, industries)

Zoom-in: February 2019

- Low wind speeds reflects local CH₄ emissions (see Nov. 2018) -> the isotopic signature of local sources are less precisely defined in the model
- Strong winds from the west reflect emissions from **coal mining** activities

-> can be distinguished by the relatively depleted δ^{13} C in CH₄

CH₄ from coal mining activities dominate when wind comes from the west, pointing at the USCB

Isotopic variations between different regions in Europe

- CH₄ emissions from different human activities: cattle farming in the Netherlands, exploitation of fossil fuels in Poland
- Significant difference in average isotopic signatures across Europe
- Analysis of isotopologues helps constrain local to regional budgets

Key findings

CH₄ enhancements occurring every night, larger isolated pollution events also occurred

The use of $\delta^2 H$ allows us to distinguish fossil fuel and biogenic related sources

 δ^{13} C allows us to distinguish between the types of fossil fuel sources

Interested in the technical aspects? Check out the **blog** on our lab installation. We've written a **scientific article**, now available for discussion! Suggestions? Questions? Don't hesitate to contact me: <u>m.menoud@uu.nl</u>

CH₄ from coal mining activities dominate when wind comes from the west, pointing at the USCB

Fossil fuel related CH₄ emissions were the main contributor

Emissions in the Krakow urban area are from the use of fossil fuel (natural gas network, power generation, industries)

> They might be under-estimated in the inventory

Method Determination of an isotopic source signature from air measurements: the Keeling plot

Mass balance equations:

 $c_a = c_b + c_s$ $c_a \delta_a = c_b \delta_b + c_s \delta_s$

$$\delta_a = c_b * (\delta_b - \delta_s)(1/c_a) + \delta_s$$

Reference: Keeling, C.D., 1961. The concentration and isotopic abundances of carbon dioxide in rural and marine air. Geochimica et Cosmochimica Acta 24, 277-298.

Background (b)

Atmosphere (a)

Plot:

 $\rightarrow \delta_{s}$ gives the isotopic signature of the emission source

 $x = 1/c_a$ vs $y = \delta_a$

Linear regression y-intercept = δ_{s}

> Example for $\delta^2 H$ in CH₄

