

Imbricated fluid diffusion and aseismic slip in a Corinth Gulf swarm (Greece)

L. De Barros, P. Dublanchet, F. Cappa, A. Deschamps

Driving processes of seismic swarms?

60

80

100

-600⁻⁴⁰⁰⁻²⁰⁰

120

140

Dinske et al., 2011

200 400

East [m]

The Corinth Gulf and the CRL network

A small swarm in the Corinth Gulf

- ~ 2000 events
- a 10-days period
- Magnitude < 3
- A planar structure

Two migration velocities

- Overall migration compatible with fluid diffusion
- Bursts of seismicity with fast velocity migration during slow-slip episodes

Repeating events

6

Repeating events and migration

1) Overall migration=> fluid diffusion

- 2) Bursts of seismicity with:
- Fast migration
- High ratio of repeating events
- => slow-slip events

Spying on injection-induced seismicity results

Fluid injection experiments (laboratory, decametric scale, reservoir and numerical modellings) show:

- fluid pressure dominantly induces aseismic slips
- Seismicity triggered by stress transfer from fluid-induced aseismic slips

(Guglielmi et al., 2015; De Barros et al., 2018; Cappa et al. 2019; Wynants-Morel et al., 2020)

Alternating phases of pressure build-up and aseismic slips

2- Slow slip (bursts of events)

De Barros et al., GRL, 2020

9

Validation through numerical modellings

Fluid

injection

Asperities

(rate weakening)

Fault

(1D, rate

strengthening)

Conclusions

A seismic swarm driven by a fluid-induced aseismic slip

<u>Danré et al., in prep</u>

11

Thanks for your attention

For more details:

Geophysical Research Letters

RESEARCH LETTER 10.1029/2020GL087142 Imbricated Aseismic Slip and Fluid Diffusion Drive a Seismic Swarm in the Corinth Gulf, Greece

Louis De Barros¹, Frédéric Cappa^{1,2}, Anne Deschamps¹, and Pierre Dublanchet³

Geophysical Research Letters

RESEARCH LETTER 10.1029/2020GL090025

Dual Seismic Migration Velocities in Seismic Swarms

P. Dublanchet¹ (b) and L. De Barros² (b)

or mail to : debarros@geoazur.unice.fr