Projected increases in surface melt and ice loss and their potential
feedbacks for the Northern and Southern Patagonian Icefields
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1. Background

Patagonia (40°S-55°S) is the region of
South America with the largest glaciers,
most of which shrinking rapidly

including the Icefields.

Ice loss (Braun et al., 2019)
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2. Why to assess the future response of the Patagonian Icetfields?

Worldwide implications:

* Concern exists in relation to their sea-level rise contribution (Zemp et al., 2019).

Supply Index (S1)
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Local implications:

* Increase in both area and number of glacial lakes (Loriaux et al., 2013, Wilson et al., 2018,
Shugar et al., 2020).

* Increase in landslide occurrence and glacial-lake outburst flood (GLOFs) events
(Dusaillant et al., 2010, Wilson et al., 2018, Iribarren-Anacona et al., 2015).

* Increase in debris-covered area over ice surfaces (Glasser et al., 2016).

* Impacts on aquatic ecosystem and sediment dynamics (Gutierrez et al. 2015; Quiroga et al.,
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* An increase demand on water resources for irrigation, domestic consumption and industrial
activities has been recognized in southern South America and glacier meltwater are recognized as
one of the main supplies (Immerzeel et al., 2020).

A Claudio Bravo Lechuga @C_Bravolechuga - Feb 24
HPN4 lake GLOF event in the Northern Patagonian Icefield, @planetlabs
images 15 and 23 February, monitored by DGA Chile station
cooperativa.cl/noticias/pais/.... More info on the evolution of this lake
@realglacier blogs.agu.org/fromaglaciersp...




3. Aim

* tomodel the surface glacier mass balance response to future climate change on the Patagonian Icefields.

4. Materials and Methods

Approach: focus is on modelling the future response of both Icefields under two pathway scenarios using a regional climate model
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5. Results: Modelling the surface mass balance

Surface Mass Balance [m w.e.]

Surface Mass Balance [m w.e.]
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For the historical period, the
mean SMB was negative in the
NPI, in agreement with
previously published geodetic
mass balances in comparable
periods.

The NPI will be characterized
by a notable negative SMB
until 2050.

No agreement with the
geodetic mass balance.

The SPI will continue to gain
mass but with lower values
compared to the historical
period.



6. Results: Components of the surface mass balance
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The variance of the annual SMB depends largely on the ablation (R? 0.88 and 0.94 for the NPI and SPI
respectively) rather than accumulation (R? of 0.57 and 0.73).



7. Results: Frontal ablation

Zeroth-order assumption

Frontal ablation

recent past = future

Frontal ablation is computed as the difference between surface
mass balance and geodetic mass balance (Schaefer et al., 2015).
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For the NPI, we derive a total frontal ablation contribution of 2.4 Gt yr!in
accordance with the robust estimation by Minowa et al. (2021) which estimated

The frontal ablation estimated by Minowa et al. (2021) in the SPI reaches 21.6 Gt
yrl, which is far lower than our estimation and previous ones. To match this
value, the SMB in the SPI must decrease ~1.5 m w.e. This reduction is in the SMB
uncertainty range and could be associated mainly with the high uncertainty in
define the actual accumulation.

If this is the case, the actual accumulation rate in the SPI will
_ be close to the estimated by Sauter (2020) between 2010 and
" 2016, which is in the lower bound of the present estimation.



8. Results: Projected contribution to sea level-rise

Cumulative mass change estimated for both icefields
combined between 2012 and 2050. For comparison
purposes, data from GlacierMIP is showed (grey
area). GlacierMIP ice mass loss corresponds to all the
models runs under scenarios RCP2.6 and 8.5
computed for the Southern Andes RGI region. Ice
mass loss estimations by Abdel-Jaber et al. (2019),
Foresta et al.(2019) and Li et al. (2019) for the four
first years (2012-2016) are also shown. Inset,
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9. Feedbacks

Not accounted in the modelling (future work?):

Debris cover area increase (Glasser et al., 2016)
Supraglacial lake (Lo Vecchio et al., 2019)
Nunataks area increase (Carrion et al., in preparation)

The main reason for the decrease in SMB is related to
projected increases in meltwater, which in turn could
trigger other mechanisms of glacier mass loss
associated with ice dynamics and frontal ablation in
glaciers with calving fronts (e.g. Minowa et al. 2017,
2021).

It is expected that the ice loss of some glaciers will be
faster due to the presence of meltwater which acting
as an ice loss positive feedback. For instance, Steffen
and Acodado glaciers (red square), where a higher rate
of melt increase is modelled, shows the most negative
elevation changes in the NPI (Abdel-Jaber et al., 2019).
Additionally, the frequency of GLOF in this area has
increased in the last few years.
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__ The atmospheric signal in the overall glacier mass loss it is more evident in the NPI

(Eggative geodetic and surface mass balance) than in the SPI (negative geodetic mass
—
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A total volume reduction for both Icefields between 22% and 27% is projected under the
RCP2.6 and RCP8.5 respectively.

The main reason for the decrease in SMB is related to projected increases in meltwater, which in turn could
trigger other mechanisms of glacier mass loss associated with ice dynamics and frontal ablation in glaciers
with calving fronts.
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