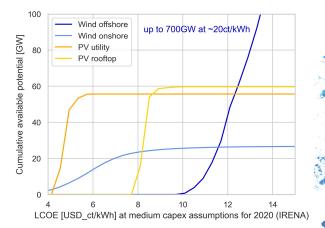

Replacing Coal with Wind and Solar in South Korea's electricity system

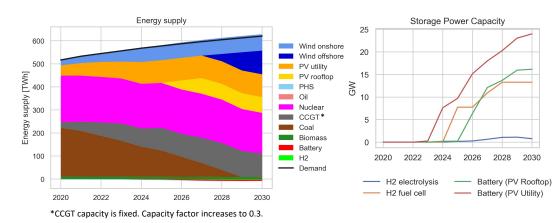
Tina Aboumahboub¹, Gaurav Ganti¹, Matthew Gidden¹, Jonas Hörsch¹, Severin Ryberg, Himalaya Bir Shrestha¹, Lara Welder¹ and Anne Zimmer¹ ¹ClimateAnalytics gGmbH, Berlin, Germany



Paris Agreement-compatible coal-phase out schedule derived from global IEA B2DS scenario

SOUTH KOREA'S potential CO_2 emissions from existing and planned coal capacity compared with Paris Agreement consistent emissions pathways.

Assessment of renewable potential based on geographical exclusion maps and simulations with historical weather data (ERA-5)

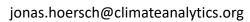


 $(\mathbf{\hat{n}})$

(3)

Techno-economic optimisation of renewable and long- and short-term storage capacities in each of the 16 regions, under:

- fixed thermal generation fleet, and
- CO₂ budget



Difficult situation for continuous optimisation:

- Firm capacity (w/o storage) covers about 2/3 of peak demand.
- 2. Nuclear ramp cycling (w/o costing)

Needs considering reserve requirements, and maybe unit commitment!

Estimation of the employment impacts of the accelerated coal phase out, based on the capacity additions and retirements in the individual regions.

LCOE Wind onshore

15.0

- 12.5 COE [NSD_ct / 10.0