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Introduction
Our planet is highly heterogeneous 
at multiple scale lengths, yet these 
inhomogeneities are not always 
included in models of the Earth’s 
interior. 

In particular, seismic codas are 
caused by the scattering of the 
wavefield at near-receiver, small-
scale structures. Scattering and 
attenuation affect signals recorded 
at the surface and can, therefore, 
affect any measurements and 
predictions we obtain from them. 

Thorough understanding of these 
phenomena and their causes is 
key. In addition to providing 
additional information about the 
tectonic history of the region, small-
scale characterizations can help us 
calculate correction factors or 
develop a technique that effectively 
removes the effect of 
inhomogeneities from seismic 
signals. 
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A Kentallenite thin section, from University of 
Leeds teaching collection at 
www.virtualmicroscope.org.

B Horizontal slices through the 3-D shear velocity model of New 
Ollerton mining site, from joint body and surface wave inversion. 

From Zhang et al. (2020).

C Global tomography depth slice at the core-mantle 
boundary (~2890 km), from the DETOX-P3 model 
by Hosseini et al. (2020).



  

Data

Pilbara Seismic Array
(PSA)

Warramunga Array
(WRA)

Alice Springs Array
(ASAR)

North
Australian

Craton
(NAC)

West
Australian

Craton
(WAC)

PSA

ASAR

WRA We analysed data from three 
seismic arrays in Australia: 

● Pilbara Seismic Array (PSA)

● Alice Springs Array (ASAR)

● Warramunga Array (WRA)

ASAR and WRA are located on the 
North Australian Craton (NAC), one 
of the Proterozoic cratons in 
Australia, and are primary seismic 
arrays of the International Monitoring 
System. 

PSA, on the other hand, sits on top 
of the Archaean West Australian 
Craton (WAC).



  

Data
Our dataset is, to our knowledge, the largest dataset ever used in a study using energy flux models. This 
dataset includes, for each array, earthquakes:
● from January 2012 to December 2018
● 30 to 80 degrees epicentral distance from the arrays

● minimum depth of 200 km
● magnitudes 5 to 7

Number of events 
previously used



  

Methods

Example of a random
medium realisation:

Modified from Sato et al. (2012),
Chapter 2, Figure 2.6

Correlation length:

RMS 
velocity fluctuations

Random 
medium

approach

Modified 
Energy Flux Model 

(EFM) 
Korn (1990)

Depth Dependent 
Energy Flux Model 

(EFMD) 
Korn (1997)
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We use two different methods to model 
the small-scale structure of the 
lithosphere beneath seismic arrays or 
stations:

● Energy Flux Model (EFM): it does not 
allow any layering in the structure.

● Depth Dependent Energy Flux Model 
(EFMD): can be used with multiple 
scattering layers.

They both use the random medium 
approach and are stochastic methods, 
thus meaning that they do not aim at 
deterministically imaging the lithosphere 
but at characterising it statistically. 

Each layer in the model is characterized 
by an autocorrelation function which 
depends on two parameters: a is the 
correlation length or characteristic scale 
length of the heterogeneity, and ε is the 
RMS velocity fluctuations, which 
represents the strength of the 
heterogeneity.

These methods:

● Use the single scattering approximation.

● Are acoustic models.

● Do not describe scattering interactions 
in detail, but treat them statistically.

● Are computationally highly effective.



  

The single-layer Energy Flux Model (EFM)
An advantage of the EFM, is that 
it allows us to compare between 
different attenuation 
mechanisms:
● scattering
● anelasticity (intrinsic 

attenuation)
● diffusion (leakage out of the 

heterogeneous layer)

To do this, the first step is to 
calculate the coda envelopes as 
described in Korn (1990). The 
coda of the logarithm of the 
squared envelope can be fitted 
with linear least squares. For 
each frequency band, we obtain 
two parameters from the linear 
fit. These are used to calculate 
the scattering, intrinsic and 
diffusion quality factors for each 
frequency band. A background P 
wave velocity of the area is 
required for the calculation.



  

The single-layer Energy Flux Model (EFM)
For each array, and assuming an exponential autocorrelation 
function, we calculated the value and frequency dependence of the 
intrinsic (Q

i
), diffusion (Q

diff
) and scattering (Q

s
) quality factors. 

The combined quality factor, Q
comb

, summarises the effects of 
attenuation in the coda:

Our results: 

● indicate intrinsic and diffusion attenuation are strongest for ASAR.

● suggest scattering and total attenuation are similarly strong for 
ASAR and WRA.

● show that the lithosphere beneath PSA is less attenuating and 
heterogeneous than for ASAR or WRA.

● agree with previous studies and with the tectonic histories of the 
regions the arrays are located on. Lower quality factors are related 
to areas with recent or intense tectonic histories. ASAR is on an 
area widely affected by the accretionary processes that took place 
during the assembly of the Australian continent, as well as two 
orogens. WRA, closer to the centre of the NAC, is on an area with a 
less active tectonic history. The WAC, where PSA is, has been 
located on passive tectonic margins for most of its history, which 
can be related to the much higher quality factors obtained for this 
array.

Results for the Australian arrays

Qcomb
−1=Q s

−1+Q i
−1+Qdiff

−1



  

The depth-dependent Energy Flux Model (EFMD)
For the EFMD, we tested three different lithospheric models with increasing complexity: 
●Model type I: single scattering layer that encompasses the entire lithosphere
●Model type II: two horizontal layers, which represent the crust and lithospheric mantle respectively
●Model type III: includes two equally thick layers in the crust and the same bottom layer as model type II 
for the lithospheric mantle.  
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The depth-dependent Energy Flux Model (EFMD)
The Bayesian EFMD requires:

● the normalised coda envelopes 
calculated in the first step of the 
EFM.

● the intrinsic quality factor value 
obtained from the EFM inversion.

● a background P wave velocity for 
each layer in the model.

● crustal and lithosphere-
asthenosphere transition depths.

Our Bayesian EFMD uses a Markov 
chain Monte Carlo (McMC) 
algorithm: one of the scattering 
parameters (correlation length or 
RMS velocity fluctuations) in the 
initial model is randomly chosen 
and randomly updated. Synthetic 
envelopes for the new model are 
compared with those for the 
previous model using the likelihood. 
The new model is accepted if the 
likelihood is improved, or if the 
likelihood ratio is larger than a 
random number in the (0, 1) range. 
Else, it will be rejected and the 
algorithm will go back to the 
previous model.



  

The depth-dependent Energy Flux Model (EFMD)
From our ensemble of models, we can 
obtain the posterior density functions 
(PDFs) for each parameter and layer.

These PDFs allow us to obtain detailed 
information about the trade offs and 
uncertainties in the determination of the 
heterogeneity parameters. Instead of 
extracting a single value of each parameter 
for each layer, we calculate the 
5 – 95 percentile range (PR) and use it as 
our solution in each case.

To test our Bayesian inversion algorithm, 
we tried to recover the input parameters for 
one 1-layer model, three 2-layer models 
and one 3-layer model. For each one, we 
ran 3 parallel chains, each 1, 2 or 3 million 
iterations (models tested) long for models 
with 1, 2 or 3 layers respectively. The same 
number of chains and iterations were used 
for our real data inversions.



  

The depth-dependent Energy Flux Model (EFMD)
Synthetic tests results: model type I

Results for our synthetic test of model type I (1-layer model).

Panel content in all EFMD results figures is as in this one. A-B represent the posterior density functions (PDFs) of the RMS velocity fluctuations (ε) and correlation length (a) 
respectively, while C shows the joint PDF of both parameters. Dotted blue lines mark the input parameter values and shaded area the 5-95 percentile range (PR). The PDFs are 
nearly Gaussian, symmetric and extremely narrow, which points to the range of suitable values of the parameters being very well defined. Panels on the right (D) show the input 
synthetic envelopes (blue dotted lines) together with histograms of the ensemble of synthetic envelopes obtained from all models accepted by our Bayesian inference algorithm. 
Shaded area represents the time window used for the fit. In all cases, the highest density of envelopes is found in a very narrow zone around the input values, showing that fits to 
the input data are very good despite the very slight overestimation of a and underestimation of ε (<0.4% of the true value in both cases).

A

B

C

D



  

The depth-dependent Energy Flux Model (EFMD)
Synthetic tests results: model type II (similar heterogeneity strength in both layers)

Results for our synthetic test of model type II (2-layer model) with similar heterogeneity strength on both layers.

PDFs for the parameters in both layers are narrow (5–95 PR is < 0.7 km wide for a and < 0.5% for ε) and approximately centred around the input values, even if they 
are not Gaussian and show some local maxima. The true values of the parameters lie within the 5–95 PR in all cases, near the centre of the joint PDFs, and the 
maximum difference between the input values and the absolute maxima of the PDFs is ~2%. Panels on the right indicate fits to the synthetic data are very good, since 
they show again that the largest concentration of synthetic envelopes for all frequencies coincides with the input data envelopes.



  

The depth-dependent Energy Flux Model (EFMD)
Synthetic tests results: model type II (strong crustal heterogeneity, weak lithospheric mantle heterogeneity) 

Results for our synthetic test of model type II (2-layer model) and our first high contrast setting (strong crustal heterogeneity vs. weak upper mantle heterogeneity).

PDFs for the parameters in layer 1 are very narrow (< 0.01 km wide for a and < 0.07% for ε) and approximately Gaussian. However, solutions for layer 2 are not 
unique and PDFs have complicated shapes. The algorithm tends to favour higher values of the parameters in this layer, with the true values of the parameters lying 
slightly outside the 5-95 PRs. Still, panels on the right show that the synthetic envelopes for the vast majority of the accepted models provide really good fits to the 
input data.



  

The depth-dependent Energy Flux Model (EFMD)
Synthetic tests results: model type II (weak crustal heterogeneity, strong lithospheric mantle heterogeneity) 

Results for our synthetic test of model type II (2-layer model) and our second high contrast setting (weak crustal heterogeneity vs. strong upper mantle heterogeneity).

PDFs for the parameters in layer 2 are very narrow (~ 0.004 km wide for a and ~ 0.004% for ε) and approximately Gaussian. As in our previous test, solutions for layer 
1 are not unique and PDFs have complicated shapes. The algorithm favours higher values of the parameters in this layer. Still, panels on the right show that the 
synthetic envelopes for the vast majority of the accepted models provide really good fits to the input data.



  

The depth-dependent Energy Flux Model (EFMD)
Synthetic tests results

Results for our synthetic test of model type III (3-layer model), combination of the results from three independent chains with a total of 15 million models tested. 

PDFs are non-Gaussian and have complex shapes, which widens the 5–95 PR and increases the range of suitable values of the parameters. Correlation length PDFs 
show clearly defined maxima near the true values of the parameter in all layers. RMS velocity fluctuations PDFs are more complex and do not show clear maxima near 
the input parameter values. These results show a strong trade-off between parameter values in different layers of the model, especially the two crustal layers, and 
allows us to identify two independent sets of parameters that provide equally good fits to the data, even if neither of them fully match the input parameter values. This 
difference between input and recovered parameter values made us decide not to use model type III in our real data inversions.



  

The depth-dependent Energy Flux Model (EFMD)
Pilbara Seismic Array (PSA) results

Results for PSA and model type I (1-layer model), combination of the results from three independent chains with a total of 3 million models tested. 

This model generates high amplitude codas that very slowly decay over time. The algorithm favoured very high correlation lengths (>23 km) and very low RMS velocity 
fluctuation (<0.008%) values, which would represent a weakly heterogeneous lithosphere. However, the very low likelihood values obtained during the inversion and 
the poor fits to the data observed on the panels on the right, make these results unreliable and this model too simple to explain the lithospheric structure beneath this 
array. Tests of this model type on ASAR data, for which coda amplitudes are higher, yielded similar results. 



  

The depth-dependent Energy Flux Model (EFMD)
Pilbara Seismic Array (PSA) results

Results for PSA and model type II (2-layer model), combination of the results from three independent chains with a total of 9 million models tested. 

Eight frequency bands were used in this inversion. PDFs point to very low ε values in both layers and either low (<1 km) or very large (>10 km) a values. Coda fits for 
the lowest three frequency bands (right panels) are poor, while the algorithm can fit our envelopes at higher frequencies. These results, combined with the very low 
likelihood values obtained for this case, led us to hypothesize that codas at those frequencies may be affected by large-scale heterogeneities and not composed only 
of energy scattered at small-scale structures. Therefore, we used only the five highest frequency bands for the rest of our inversions.



  

The depth-dependent Energy Flux Model (EFMD)
Pilbara Seismic Array (PSA) results

Results for PSA and model type II (2-layer model), and the five highest frequency bands. Combination of three independent chains, 9 million models tested. 

PDFs in layer 1 are gaussian, narrow and mostly symmetric, which points to clearly defined parameter values. Correlation lengths are in the 0.5-0.8 km range, while ε 
take values from 2.3-2.5 %. Parameter values for layer 2 are not unique. The lithospheric mantle appears to be mostly homogeneous, with low values of ε (<2%) being 
favoured and a slight prevalence of high (>5 km) a values, even if any value of this parameter within our range of interest is capable of fitting our data. Likelihood 
values of all models accepted in this inversion are high, which is also obvious from the good fits to the data shown on the panels on the right of this figure.



  

The depth-dependent Energy Flux Model (EFMD)
Alice Springs Array (ASAR) results

Results for ASAR and model type II (2-layer model), and the five highest frequency bands. Combination of three independent chains, 9 million models tested. 

PDFs in layer 1 are nearly gaussian and narrow. Correlation lengths are in the 0.2-1.4 km range, while RMS velocity fluctuations take values from 2.4-3.0 %. As before, 
solutions are not unique for the lithospheric mantle. ε values below 3.7% are paired with a values throughout the entire range considered here, even if the PDF shows 
similarly high peaks on both ends (<1 km and >5 km). Fits to the data are good for these frequencies and likelihood values for this inversion are high.



  

The depth-dependent Energy Flux Model (EFMD)
Warramunga Array (WRA) results

Results for WRA and model type II (2-layer model), and the five highest frequency bands. Combination of three independent chains, 9 million models tested. 

PDFs for the crust are nearly gaussian and narrow. Correlation lengths are in the 0.7-1.5 km range, while RMS velocity fluctuations take values from 3.1-3.9 %. For 
layer 2, solutions are not unique. Any correlation length within our range of interest can provide good fits to the data, even if there’s a slight preference for high (>5 km) 
values over lower values. The 5-95 PR for ε in this layer extends up to 5%. High likelihood values obtained from this inversion demonstrate the quality of the fits to our 
data, shown on the panels on the right.



  

Conclusions
We combined energy flux models with a new Bayesian inference algorithm and applied them to a 
large, high-quality dataset for three seismic arrays in Australia (ASAR, WRA and PSA). Our results:

 show that the structure beneath ASAR is the most attenuating and heterogeneous one.

show that the heterogeneity and overall attenuation structure for ASAR and WRA is comparable 
and different to PSA.

show that scattering is the dominant attenuation mechanism above ~2Hz for all arrays.

suggest the crust is more heterogeneous than the lithospheric mantle for all arrays. Correlation 
lengths in the crust vary from ~0.2-1.5 km and RMS velocity fluctuations take values in the 2-4 % 
range. The lithospheric mantle structure is more complex and solutions for this layer are not 
unique. 

are consistent with the tectonic histories of the areas the arrays are located on.

agree with previous studies in these areas using different techniques.



  

Conclusions
The combination of the EFM and Bayesian EFMD is an effective and useful tool for the 
characterization of the near receiver, small-scale heterogeneity structure of the lithosphere. We have 
shown that this approach: 

allows us to compare different attenuation mechanisms.

can be used both for seismic arrays and single seismic stations.

can be used for seismically quiet areas, since it requires teleseismic data.

can be used for weak and strong scattering regimes.

allows us to use a Bayesian inference algorithm. The resulting PDFs of the heterogeneity parameters 
(correlation length and RMS velocity fluctuations), provide detailed information about the parameter 
space, as well as the trade offs and uncertainties in the determination of the parameters.



  

Want to know more?

Check out our vPICO session on Monday, April 26, from 9:00 – 10:30

or

Have a look at our preprint, submitted and currently under review with Geophysical Journal 
International, at https://doi.org/10.31223/X5S89Q

https://doi.org/10.31223/X5S89Q
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