

Towards robots with geologist eyes? Computer Vision and Deep Learning approaches to field samples analysis

Antoine LECHEVALLIER Jean-Claude LECOMTE Renaud DIVIES Sylvain DESROZIERS Mathieu FERAILLE Abdoulaye KOROKO

PITCH SLIDE

Towards robots with geologist eyes?

Computer Vision and Deep Learning approaches to field samples analysis

antoine.bouziat@ifpen.fr

Lithology recognition

1. Deep Learning classification model

input : photo of rock

output : lithology + confidence score

Likelihood Basalt - 93 % Shale - 2 % Sandstone – 1 %

2. First application

Transfer Learning approach 12 litho classes Training on 2700 public images 90 % accuracy

4. Geological knowledge embedding

Recognize petro features Predict litho from features and decision tree

Origin CNN classifier: Intrusive-looking (99%)

Chemistry CNN classifier: Felsic-looking (99%)

Banding CNN classifier: Visible (94%)

Litho-type decision tree: It may be an orthogneiss

Ex: paleofauna on thin sections Cascade R-CNN neural architecture 12 seconds by section Categorization in 9 species Results validated by experts

Element extraction -

TELLUS consortium

www.tellus-digital.net

FULL PRESENTATION

Computer vision?

- Subfield of Artificial Intelligence
- Dedicated to automated image interpretation
- Technological leaps thanks to the **Deep Learning** boom
- Applications: medical diagnosis, facial recognition, self-driving cars...

Three main families of algorithms

• Image classification

DOG

CAT

Three main families of algorithms

- Image classification
- Image segmentation

Three main families of algorithms

- Image classification
- Image segmentation
- Object detection

Computer vision for rock images?

- Multiple applications
- May be key for mining automation
- But rocks are complex objects
- Exciting research area

Use case 1: Lithology recognition

Use case 2: Element detection

LITHOLOGY RECOGNITION

Feasibility study

- Pluri-centimetric field samples
- 12 lithological classes

Flint

Evaporite

Micaschist

- Sandstone
- Conglomerate
- Shale
- Limestone

- Granite
- Basalt
- **Orthogneiss** Gabbro

Dunite

LITHOLOGY RECOGNITION

Output

Energétiq

LITHOLOGY RECOGNITION

DIRECT APPROACH

Model architecture

- Input: a rock sample picture
- Output: probabilities of belonging to the 12 classes
- VGG convolutional neural network

Data set

- 2700 labelled images 80% used for training
- Standard data augmentation (rotate, flip...)

Results

- Most probable class is correct for 90% of test pictures
- Photo quality is an impactful factor

Conglomerate 98% Flint 1% Mica schist < 1%

Mudrock 87%

LITHOLOGY RECOGNITION

[Bouziat et al. 2020]

WITH PRIOR GEOLOGICAL KNOWLEDGE

Challenge

• Embed prior geological knowledge in the model

Proposal

- Train CNNs to recognize petrological features
- Combine them in a naturalist decision tree

Assets

- Split the question in a series of simpler ones
- More data per class from the same images set
- Integrate more geological control in the model

Litho-type decision tree: It may be an orthogneiss

LITHOLOGY RECOGNITION WITH OBJECT DETECTION

Objective

Reduce sensibility to photo framing

Model architecture

- Mask-RCNN network
- Detectron2 implementation

Data set

• 800 images manually annotated

Use case 1: Lithology recognition

Use case 2: Element detection

Feasability study

- Automatic detection and categorization of microfossils in thin section images
- Maybe extended to other use cases (ex: detection of ore nuggets)

Input image

Automated interpretation

ELEMENT DETECTION

Metric used for evaluation of detection algorithms: Average Precision (AP)

- Intersection Over Union (IOU) (between 0 and 1)
- True Positive (TP): correct detection (IOU>threshold)
- False Positive (FP): wrong detection (IOU<threshold)
- False Negative (FN): ground truth non detected

- precision =
$$\frac{TP}{TP+FP}$$

- recall = $\frac{TP}{TP+FN}$
- curve precision vs recall $r \mapsto p(r)$
- $AP = \int_0^1 p(r) dr$

The threshold is usually set to 0.5, 0.75 or 0.95

[Zhao et al. 2019]

Two groups of Deep-Learning-based detection algorithms

- One-stage detectors: less precise but faster
- Two-stage detectors: more precise but slower

Most popular one-stage detectors:

- YOLO - SSD - RetinaNet

Most popular two-stage detectors:

- R-CNN Fast R-CNN Faster R-CNN
- Mask R-CNN Cascade R-CNN

(a) one-stage detector

(b) two-stage detector

Data from carbonate samples

- **145** scanned sections **9** microfossil families
- 15 annotated (with Microsoft VoTT https://github.com/microsoft/VoTT)
- Highly imbalanced classes
- Use of data augmentation techniques

Four models trained with the annotated sections

- RetinaNet - Faster R-CNN - Mask R-CNN - Cascade R-CNN

Assessment of inference

- Quantitative on training set: Average Precision metric
- Qualitative on test set: professional geologists
- Average inference time measured for each model

Frameworks: - Detectron2 - Pytorch

https://github.com/facebookresearch/detectron2

https://pytorch.org/

Promising results of Deep Learning models on our business case

- Microfossils with high number of occurences in the training set tend to be correctly detected and identified.
- One-stage detectors less accurate but faster than two-stage ones
 - Best AP50 model: Mask R-CNN
 - Best AP75 model: Cascade R-CNN
 - Slowest model: Cascade R-CNN
 - Fastest model: RetinaNet
 - Least accurate model on average: RetinaNet

Speed differences not so significant in our use case

=> The most accurate models even if slower are recommended

Results to be confirmed on larger datasets

	Detector	Precision (AP50)	Precision (AP75)	Inference time (on CPU)
	RetinaNet	88.095	87.73	7.10 s / img
	Faster R-CNN	94.087	93.07	11 s / img
	Mask R-CNN	96.36	86.74	12.43 s / img
	Cascade R- CNN	95.60	94.96	12.45 s / img

Results of quantitative evaluation of the models on the training data

ELEMENT DETECTION

For all detection models, the results on the test data were evaluated as very satisfactory by geologists

Some detections from test images with Mask R-CNN

For all detection models, the results on the test data were evaluated as very satisfactory by geologists

Some detections from test images with Mask R-CNN

CONCLUSIONS & PERSPECTIVES

Promising results using Deep Learning for rock images analysis

Close collaboration between geologists and data scientists

Technologies yet to be integrated in **operational mining processes**

- Stimulating R&D opportunities
- Interest in industrial and academic partnerships
- TELLUS consortium

Thanks for your attention! Antoine BOUZIAT Abdoulaye KOROKO Antoine LECHEVALLIER Sylvain DESROZIERS Jean-Claude LECOMTE Mathieu FERAILLE antoine.bouziat@ifpen.fr Renaud DIVIES Antoine BOUZIAT @AntoineBouziat by Ifpen

www.tellus-digital.net

