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Lithology recognition 

1. Deep Learning classification model 
 

input : photo of rock 
 

output : lithology + confidence score   

antoine.bouziat@ifpen.fr  

Likelihood 
 

Basalt - 93 % 
Shale - 2 % 

Sandstone – 1 % 

2. First application 
 

Transfer Learning approach 
 

12 litho classes 
 

Training on 2700 public images 
 

90 % accuracy 

4. Geological knowledge embedding 
 

 Recognize petro features 
 

Predict litho from features and decision tree 

3. Background removal  
 

Object detection model 

Ex: paleofauna on thin sections 
 

Cascade R-CNN neural architecture 
 

 

Element extraction 

 

12 seconds by section 
 

Categorization in 9 species 
 

Results validated by experts 
 

 

3. Background removal  
 

Object detection model 

   www.tellus-digital.net     

TELLUS consortium 

mailto:antoine.bouziat@ifpen.fr
http://www.tellus-digital.net/
http://www.tellus-digital.net/
http://www.tellus-digital.net/


FULL PRESENTATION 



5 |    ©  2 0 1 8  I F P E N  

Computer vision? 
 

 

• Subfield of Artificial Intelligence  

 

• Dedicated to automated image interpretation 

 

• Technological leaps thanks to the Deep Learning boom 

 

• Applications: medical diagnosis, facial recognition, self-driving cars… 
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Three main families of algorithms 
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• Image classification  
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Three main families of algorithms 
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• Image classification 

 

• Image segmentation 

 

• Object detection  
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Computer vision for rock images? 
 

 

• Multiple applications 

 

• May be key for mining automation  
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CONTEXT 

 

• But rocks are complex objects 
 

 

 

 

 

 

• Exciting research area  
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Use case 1: Lithology recognition 
 

 

 

 

 

 

 

 

 

 

 

 

Use case 2: Element detection 
 

 

 

 
©  2021  IFPEN 

OUTLINE 



11 |    ©  2 0 1 8  I F P E N  

Feasibility study  
 

 

• Pluri-centimetric field samples 
 

• 12 lithological classes   
 

 • Sandstone 

• Conglomerate 

• Shale 

• Limestone 

 

 

 

 

 

• Flint 

• Evaporite 

• Orthogneiss 

• Micaschist 

 

 

 

 

 

• Granite 

• Basalt 

• Gabbro 

• Dunite 
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Model 
(supervised classification) Y 

X 

Labeled data 

New entry 

New entry 

LITHOLOGY RECOGNITION 
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Multiple 
descriptors 

New entry 

New entry 

Convolutional 
Neural Network  

[Simonyan and Zisserman, 2014] 

©  2021  IFPEN 

LITHOLOGY RECOGNITION 

https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
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Model architecture 
 

• Input: a rock sample picture 
 

• Output: probabilities of belonging to the 12 classes 
 

• VGG convolutional neural network 

 

Data set 
 

• 2700 labelled images - 80% used for training 
 

• Standard data augmentation (rotate, flip…) 
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Basalt 93% 
Shale 2% 

Sandstone 1% 

Sandstone 99% 
Dunite < 1% 

Limestone < 1% 

Conglomerate 98% 
Flint 1% 

Mica schist < 1% 

Mudrock 87% 
Flint 11% 

Mica schist < 1% 

Limestone 37% 
Sandstone 32% 
Mudrock 26% 

LITHOLOGY RECOGNITION 

 DIRECT APPROACH 

 

Results 
 

• Most probable class is correct for 90% of test pictures  
 

• Photo quality is an impactful factor 
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Challenge 
 

• Embed prior geological knowledge in the model 

 

Proposal 
 

• Train CNNs to recognize petrological features 
 

• Combine them in a naturalist decision tree 
 

 

 

 

Assets 
 

• Split the question in a series of simpler ones 
 

• More data per class from the same images set 
 

• Integrate more geological control in the model    
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LITHOLOGY RECOGNITION 

 WITH PRIOR GEOLOGICAL KNOWLEDGE 
[Bouziat et al. 2020] 

https://doi.org/10.3997/2214-4609.202032047
https://doi.org/10.3997/2214-4609.202032047
https://doi.org/10.3997/2214-4609.202032047
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LITHOLOGY RECOGNITION 

 WITH OBJECT DETECTION 

Objective 
 

• Reduce sensibility to photo framing 

 
 
 

 
 

 

 

 

Model architecture 
 

• Mask-RCNN network 
 

• Detectron2 implementation 
 

 

Data set 
 

• 800 images manually annotated 
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OUTLINE 

Use case 1: Lithology recognition 
 

 

 

 

 

 

 

 

 

 

 

 

Use case 2: Element detection 
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Feasability study 
 
 
 

• Automatic detection and categorization 
of microfossils in thin section images 
 

• Maybe extended to other use cases  
       

                (ex: detection of ore nuggets) 
 

 

 
 

Input image Automated interpretation 

ELEMENT DETECTION 
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AP 

Metric used for evaluation of detection algorithms: Average Precision (AP) 
 

 - Intersection Over Union (IOU) (between 0 and 1) 
 
 
 

 - True Positive (TP): correct detection (IOU>threshold) 
 

 - False Positive (FP): wrong detection (IOU<threshold) 
 

 - False Negative (FN): ground truth non detected  
 
 
 

 - precision =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

 - recall =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 - curve 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑣𝑠 𝑟𝑒𝑐𝑎𝑙𝑙 𝑟 ↦ 𝑝 𝑟  

 - 𝐴𝑃 =  𝑝 𝑟 𝑑𝑟
1

0
 

 
 
 

The threshold is usually set to 0.5, 0.75 or 0.95 
 

 
 
 

ELEMENT DETECTION 
[Padilla et al. 2020] 

https://ieeexplore.ieee.org/abstract/document/9145130/
https://ieeexplore.ieee.org/abstract/document/9145130/
https://ieeexplore.ieee.org/abstract/document/9145130/
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(a) one-stage detector 
 
(b) two-stage detector 

 
Two groups of Deep-Learning-based detection algorithms 
      
  

                  - One-stage detectors: less precise but faster 
  
      - Two-stage detectors: more precise but slower 

 
 
 

Most popular one-stage detectors: 
 

             - YOLO     - SSD      - RetinaNet 
 
 

Most popular two-stage detectors: 
 

      

               - R-CNN   - Fast R-CNN   - Faster R-CNN 
 

    - Mask R-CNN   - Cascade R-CNN 
 

ELEMENT DETECTION 
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[Zhao et al. 2019] 

https://arxiv.org/pdf/1807.05511.pdf&usg=ALkJrhhpApwNJOmg83O8p2Ua76PNh6tR8A
https://arxiv.org/pdf/1807.05511.pdf&usg=ALkJrhhpApwNJOmg83O8p2Ua76PNh6tR8A
https://arxiv.org/pdf/1807.05511.pdf&usg=ALkJrhhpApwNJOmg83O8p2Ua76PNh6tR8A
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Data from carbonate samples 
 
 

      - 145 scanned sections - 9 microfossil families  
 

      - 15 annotated (with Microsoft VoTT https://github.com/microsoft/VoTT)  
 
 

      -  Highly imbalanced classes 
 

      -  Use of data augmentation techniques 
 

Four models trained with the annotated sections 
 
 

     - RetinaNet   - Faster R-CNN  - Mask R-CNN   - Cascade R-CNN 
 
 

Assessment of inference 
 

      -  Quantitative on training set: Average Precision metric  
      

      -  Qualitative on test set: professional geologists 
 

      -  Average inference time measured for each model 
 

      
 
 
 

 
 

 
 
 
 
 
 
 
 
  
 
  

Frameworks: - Detectron2 - Pytorch 
 

https://github.com/facebookresearch/detectron2  
 
https://pytorch.org/ 

 

ELEMENT DETECTION 
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https://github.com/microsoft/VoTT
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Promising results of Deep Learning models on our business case 
 
Microfossils with high number of occurences in the training set  
     

tend to be correctly detected and identified.  
 
One-stage detectors less accurate but faster than two-stage ones 
 

       - Best AP50 model: Mask R-CNN 
 

       - Best AP75 model: Cascade R-CNN 
 

       - Slowest model: Cascade R-CNN 
 

       - Fastest model: RetinaNet 
 

       - Least accurate model on average: RetinaNet 
 
 

Speed differences not so significant in our use case 
 

       => The most accurate models even if slower are recommended 
 
 

Results to be confirmed on larger datasets 
 

 
 

Detector 
 Precision 
    (AP50) 

Precision  
 (AP75) 

Inference 
time 

(on CPU) 

 RetinaNet 88.095 87.73 7.10 s / img 

 Faster  
R-CNN 

94.087 93.07 11 s / img 

Mask  
R-CNN 

96.36 86.74 12.43 s / img 

 Cascade R-
CNN 

95.60 94.96 12.45 s / img 

Results of quantitative evaluation  
of the models on the training data 

ELEMENT DETECTION 
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[Koroko et al. 2021] 

https://arxiv.org/pdf/1807.05511.pdf&usg=ALkJrhhpApwNJOmg83O8p2Ua76PNh6tR8A
https://doi.org/10.3997/2214-4609.202132005
https://doi.org/10.3997/2214-4609.202132005
https://doi.org/10.3997/2214-4609.202132005
https://doi.org/10.3997/2214-4609.202132005
https://arxiv.org/pdf/1807.05511.pdf&usg=ALkJrhhpApwNJOmg83O8p2Ua76PNh6tR8A
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Some detections from training images with Mask R-CNN 

ELEMENT DETECTION 
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Some detections from training images with Mask R-CNN 
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Some detections from test images with Mask R-CNN 

For all detection models, the results on the test data were evaluated as very satisfactory by geologists  
 

ELEMENT DETECTION 
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Some detections from test images with Mask R-CNN 

ELEMENT DETECTION 
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For all detection models, the results on the test data were evaluated as very satisfactory by geologists  
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Promising results using Deep Learning for rock images analysis 
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www.tellus-digital.net  

CONCLUSIONS & PERSPECTIVES 

 

Close collaboration between geologists and data scientists 
 

 

 

Technologies yet to be integrated in operational mining processes 
 

 

  Stimulating R&D opportunities 
 

  Interest in industrial and academic partnerships 
 

  TELLUS consortium  

 

http://www.tellus-digital.net/
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Thanks for your attention! 

antoine.bouziat@ifpen.fr 
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