

LMATIETEEN LAITOS 1ETEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Drone-based sea ice albedo measurements and photogrammetry during the Arctic freeze-up in the MOSAiC expedition

Roberta Pirazzini¹, Henna-Reetta Hannula¹, David Brus¹, Ruzica Dadic^{2,3}, Martin Schneebeli³

¹Finnish Meteorological Institute, Helsinki, Finland ²Victoria University of Wellington, New Zealand ³WSL Institute for Snow and Avalanche Research SLF, Switzerland

> vEGU General Assembly 2021 Abstract id: EGU21-11377 30.4.2021

POLARSTERN

Research questions

- How surface-based albedo measurements (with footprint of few tens of square meters) relate to larger (satellite) scale observations?
- What is the role of the various surface features (melt pond, ridges, leads) on the areal averaged albedo in the observed phases of the freeze up period?
- What is the surface roughness defined at different scales (from mm to couple hundred meters) and its role for albedo?

Datasets

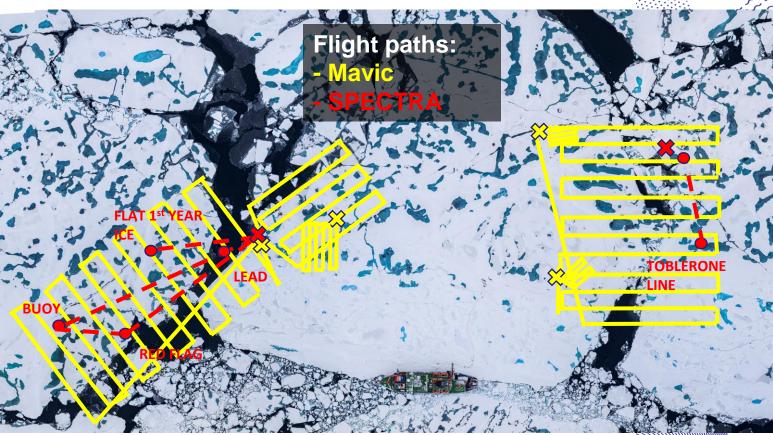
- Drone-based albedo observations
- Drone-based maps (DEM, areal representation of different surface types)
- Fixed FMI radiation station
- Structure from Motion (SfM) DEMs

Drone-based observations

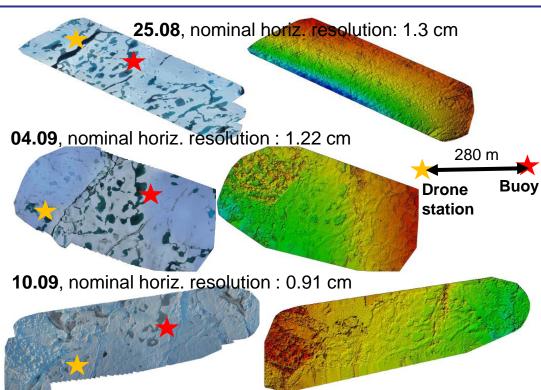
Payload: Broadband albedo: paired Kipp and Zonen CM4 pyranometers

Spectral albedo: paired Ocean Optics STS VIS (350 – 800 nm) and NIR (650-1100 nm) microradiometers

Measurements


- 17 flights with SPECTRA in 8 days, ~5 flight h.
- 35 flights (maps) with Mavic in 18 days, ~11,5 flight h.,24 maps produced

Main problems


No compass at North Pole -> manual operations Cold and moist air -> freezing blades and fingers Little solar radiation -> high noise in albedo data

Drone-based DEMs of main surveyed areas in leg 5

Data cleaning (QC) to be done:

- Correct the digital elevation models from artifacts (tilt) using ground check points and assess for horiz. and vertical uncertainty
- Convert lat/lon to x/y floenavi system to overly SPECTRA and Mavic data

Data products to be derived:

- Surface roughness
- Fraction of melt ponds, ridges, leads
- In overcast conditions, broadband albedo maps (calibrated with the 30m SPECTRA broadband albedo) and the RGB albedo maps (calibrated with the 30m SPECTRA spectral albedo).

Drone-based albedo measurements

Measurement strategy

- **Transects**: horizontal transects at the height of 5, 10, and 30m, from the drone station to reference points (buoy, red flags)
- Vertical profiles: above the reference points, from 5 to 30m.

Data processing and QC Sensor's characterization:

- Sensor's re-calibration
- Correction of the sensitivity drift caused by temperature change
- Correction of the deviation from perfect cosine response

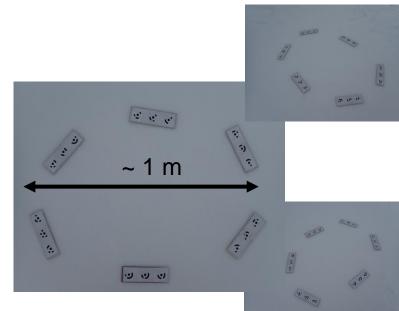
Data comparison:

 Comparison of incoming irradiance (spectral and broadband) with measurements from fixed instruments.

Uncertainty assessment

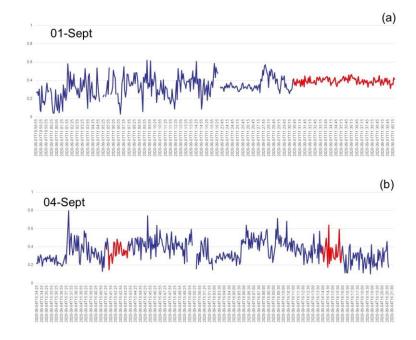
ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Surface roughness: from mm to 150 m scales


Roughness affects the surfaceelectromagnetic interaction and the horizontal air flow

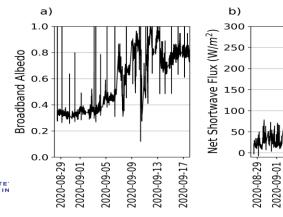
We combine drone-based DEMs with SfM DEMs (obtained from manual photos of a target area of ~1m diameter) to get roughness at various scales:

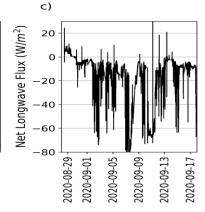
- **mm scale** → optical and near-infrared wavelengths
- **cm scale** → optical and microwave wavelengths
- dm m scales \rightarrow all wavelengths and air flows


Structure from Motion (SfM) DEMs:

First look into SPECTRA broadband albedo

- Areal-averaged albedos measured at 5m and 10m asl (blue lines) have a larger variability than the areal-averaged albedo measured at the elevation of 30m (red lines).
- A certain degree of albedo variability is unavoidable even during hovering at 30m because it is not possible to keep the drone over the same surface while the ice is drifting.
- On 1st and 4th of September (overcast conditions) the 30m albedo was similar even over different surface types -> <u>the 30m albedo is not</u> <u>significantly affected by the individual surface</u> <u>features and, therefore, it is potentially</u> <u>representative for satellite footprint and model</u> <u>grid area</u>.
- The 30m albedo measured on 1st and 4th of September was around 0.4, consistently with the averaged albedo value measured along the Kinder line in the same period.





Broadband drone observations will be compared with data from fixed surface stations, e.g. the FMI radiation station:

Uncleaned measurements during Leg5:

2020-09-17

2020-09-05 2020-09-09 2020-09-13

Outlook

After the cleaning, quality check and uncertainty assessment of the measurements, we plan to:

- Compare the drone-based albedo observations with:
 - surface-based measurements from fixed stations and portable devices operated along transects
 - Helicopter-based observations
- Assess the role of the various surface features (melt pond, ridges, leads) on the areal averaged albedo in the observed phases of the freeze up period.
- Study the relationship between surface microstructure properties, surface roughness, and measured albedo.

