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Data
• ERA5 Reanalysis Data by ECMWF—> Regridded at 5.625 degrees,  

i.e, 32x64 lat-lon grid, (~625x625 sq km at equator)

•
• Inputs (114): several 3D and 2D fields describing atmospheric flow + auxiliary. 7 vertical levels, 3 timesteps

• Geopotential, Temperature, wind-velocity, specific humidity, 2-metre temperature, total precipitation, 
total incident solar radiation, land-sea mask, orography, latitude

• Outputs (4)

• Upper-level atmosphere: Geopotential at 500hPa (z), Temperature at 850hPa (t)

• Surface: 2-metre temperature (t2m), total precipitation (tp)

• Training: 1979-2015. Validation : 2016. Test: 2017-2018. Data at 2 hours’ interval.



Primary Model Architecture -ResNet

• For Longitudes: Periodic Conv2D- ‘soft’ cylindrical boundary condition in longitude direction

• For latitudes: All loss-functions and evaluations metrics are area-weighted

• Training on single GPU takes ~1 day. Trained with Adam Optimizer using early stopping, L2 regularisation, LR decay



Evaluation Metrics
• RMSE of ensemble mean

• Spread-Skill Ratio (Ideally=1)

• Continuous Ranked Probability Score

• Rank Histograms



Continuous Ranked Probability Score

• Strictly proper scoring rule to compare a 
cumulative probability distribution to a 
point observation. (smaller is better)

• Maximizes sharpness and calibration

• Reduces to Mean Absolute Error for 
Deterministic forecast. (easy to compare)

• Can be used as an evaluation metric or 
loss function (as in Parametric Forecast)



Rank Histograms
• ‘reliable’ forecast - observation equally likely to fall between any two members

• Construction:

• 1. For each observation point, rank the N ensemble members from lowest to 
highest value, representing N+1 bins. 

• 2.Identify the ‘rank’ of the observation, i.e., which bin it falls into. 

• 3.Tally over many observations to create a rank histogram

Overforecasting Bias
Overdispersion

(Underconfident) Rank Uniformity Underdispersion
(Overconfident)

Underforecasting Bias



Exp. 1: Monte-Carlo Dropout
• In Bayesian NNs, 

• weights follow some distribution.

• (Intractable) Predictive Posterior Distribution

• In Monte-Carlo Dropout:

• ’Dropout’ training interpreted as approximate variational 
inference to Bayesian NN.

• Train a model and simply switch ‘on’ dropout during test-time

• Make 50 stochastic forward passes, use as ensemble members

Note: In original paper [Y. Gal, Z. Ghahramani],
• mean and variance of forward passes are estimated, by optimizing a length-scale 

parameter !. Also, dropout is applied after conv, but we apply it before.
• New research shows better implementation for ResNet-with stochasticity in 

image patches, features, entire layers



Exp. 2: Parametric Forecast
• Z, T, T2M - Gaussian distributions. 

TP- Generalized Extreme Value*

• Turns into a Regression problem 

• Output: Mean, Variance.

• Ensemble: draw 50 samples from PDF

• Loss function: CRPS, a probabilistic score

• maximizes sharpness and calibration

* didn’t implement



Exp. 3: Categorical Forecast
• Divide range into 50 discrete bins

• Turns into multi-class classification problem

• Highly flexible, expressive, tractable, scalable 
for all kinds of distribution

• Performance dependent on bin size.

• Too few- coarse approximation

• Too many- low #samples/bin. Non-smooth.

• Note: Separate networks for : Z, T, T2M, TP

[MetNet, Google]



Results



MC Dropout vs Deterministic

• MC Dropout performs similar on MAE, better on CRPS
By drawing multiple realisations (50) with dropout, more probabilistic information is learned.

• Ideal Spread-Skill ratio=1 (For ‘perfect’ ensemble, Avg. RMSE= Avg. Standard Deviation)
MC Dropout has low spread-skill ratio —> Largely overconfident predictions



RMSE of Ensemble Mean
• TIGGE: State-of-the-art NWP model 

with 50 members, not post-
processed.

• MC Dropout performs better on 
deterministic score since it has 
directly been optimised for MSE.

• However lacks variability in 
predictions, i.e., is overconfident

• Parametric and Categorical perform 
reasonably well even though 
optimised on probabilistic scores



Spread-Skill Ratio

• MC Dropout has low spread-skill 
ratio, seems to evolve independent 
of RMSE

• Parametric and Categorical perform 
well, reaching >0.9 in some cases



Continuous Ranked Probability Score (CRPS)

• Parametric forecast shows 
advantage of using a Probabilistic 
Score (CRPS) as Loss function

• Performance depends on how 
well the function represents data 
(T, T2M better than Z)

• Categorical has surprisingly good 
performance, and is much easier 
to implement for all kinds of 
distribution



Rank Histograms

MC Dropout- Largely overconfident Parametric- Mostly uniform, although simple bias

Categorical- Somewhat uniform, worse near extra-
tropics & polar regions. Negative bias in TP

Tigge - Mostly uniform. ‘Drizzle bias’ in TP



Global Weather Maps

• MC Dropout- Smooth realisation with no extremes. Predicts ‘mean’ behaviour

• Parametric, Categorical - Non-smooth. Each grid-point sampled individually 
with no covariance learned. Good for local-scale predictions only



Conclusions
• MC Dropout is an improvement over deterministic but remains overconfident. 

Better implementations, specifically for ResNet, now available.

• Parametric forecast shows advantages of using a Probabilistic score as loss. 
Performance and ease of implementation dependent upon how well data 
distribution is represented by a continuous function.

• Categorical forecast is easy to implement, highly flexible, expressive for all 
data distributions. Performance dependent upon proper bin-size choice.

Purely data-driven models show reasonable skill and can prove useful for 
weather research. They should integrate knowledge from Meteorology in order 
to build better uncertainty-aware predictions.



Future Outlook
• Purely data-driven models won’t have enough training data to compete with 

NWP models for global medium-range weather forecasting (~1030 years)
Useful in nowcasting, subseasonal forecasts, local forecasts, and many more.

• As complimentary tool, useful for specific NWP stages: initial conditions 
generations, parametrization schemes, post-processing.

• Possible Improvements:

• Pre-training on coarse simulation models, fine-tuning on observations.

• Better boundary conditions: cube-sphered geometry, spherical geometry

• Architectures: Using spatial and temporal indicators such as with U-Nets, 
RNNs. For realistic realizations, conditional GANs might perform well
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