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Data

* ERAS5 Reanalysis Data t%)y ECMWF —> Regridded at 5.625 degrees,
l.e, 32x64 lat-lon grid, (~625x625 sg km at equator)

* Inputs (114): several 3D and 2D fields describing atmospheric flow + auxiliary. 7 vertical levels, 3 timesteps

* Geopotential, Temperature, wind-velocity, specific humidity, 2-metre temperature, total precipitation,
total incident solar radiation, land-sea mask, orography, latitude

* OQOutputs (4)
* Upper-level atmosphere: Geopotential at 500hPa (z), Temperature at 850hPa (t)

* Surface: 2-metre temperature (t2m), total precipitation (tp)

* Training: 1979-2015. Validation : 2016. Test: 201/7-2018. Data at 2 hours’ interval.



Primary Model Architecture -ResNet
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* For Longitudes: Periodic Conv2D- ‘soft’ cylindrical boundary condition in longitude direction

(32, 64, 114)
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* For latitudes: All loss-functions and evaluations metrics are area-weighted

* Training on single GPU takes ~1 day. Trained with Adam Optimizer using early stopping, L2 regularisation, LR decay



Evaluation Metrics

RMSE of ensemble mean
Spread-Skill Ratio (Ideally=1)
Continuous Ranked Probability Score

Rank Histograms



Continuous Ranked Probability Score

Strictly proper scoring rule to compare a
cumulative probabillity distribution to a @) ®)
point observation. (smaller is better) )

L

CRPS(E,y) = ] [F(z) — 1(y < 2)]%dz

— O

Maximizes sharpness and calibration // VAR

Observed Observed

Reduces to Mean Absolute Error for
Deterministic forecast. (easy to compare)

Can be used as an evaluation metric or
loss function (as in Parametric Forecast)



Rank Histograms

* ‘reliable’ forecast - observation equally likely to fall between any two members

* Construction:

* 1. For each observation point, rank the N ensemble members from lowest to
highest value, representing N+1 bins.

* 2.ldentify the ‘rank’ of the observation, i.e., which bin it falls into.

* 3.Tally over many observations to create a rank histogram
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Overdispersion

: : Underdispersion
Overforecasting Bias (Underconfident) Rank Uniformity D

, Underforecasting Bias
(Overconfident)



Exp. 1: Monte-Carlo Dropout

* In Bayesian NNs,

* weights follow some distribution.

* (Intractable) Predictive Posterior Distribution

p (_x;zew ‘ X) — /P (ixnew ’ w ) p (('U ‘ X)d(ﬂ

* In Monte-Carlo Dropout:

* 'Dropout’ training interpreted as approximate variational
inference to Bayesian NN.

* Train a model and simply switch ‘on’ dropout during test-time

* Make 50 stochastic forward passes, use as ensemble members

Note: In original paper [Y. Gal, Z. Ghahramani],

mean and variance of forward passes are estimated, by optimizing a length-scale
parameter t. Also, dropout is applied after conv, but we apply it before.

New research shows better implementation for ResNet-with stochasticity in
Image patches, features, entire layers
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EXxp. 2: Parametric Forecast

e /Z, T, T2M - Gaussian distributions.
TP- Generalized Extreme Value®

* Turns into a Regression problem
* Qutput: Mean, Variance.

* Ensemble: draw 50 samples from PDF

* Loss function: CRPS, a probabilistic score

* maximizes sharpness and calibration

*didn’t implement
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Exp. 3: Categorical Forecast

Divide range into 50 discrete bins

Turns into multi-class classification problem

Highly flexible, expressive, tractable, scalable
for all kinds of distribution

Performance dependent on bin size.
* Too few- coarse approximation

* Too many- low #samples/bin. Non-smooth.

Note: Separate networks for: Z, T, T2M, TP
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Results



MC Dropout vs Deterministic
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 MC Dropout performs similar on MAE, better on CRPS
By drawing multiple realisations (50) with dropout, more probabilistic information is learned.

» |deal Spread-Skill ratio=1 (For ‘perfect’ ensemble, Avg. RMSE= Avg. Standard Deviation)
MC Dropout has low spread-skill ratio —> Largely overconfident predictions



RMSE of Ensemble Mean

300 -

TIGGE: State-of-the-art NWP model
with 50 members, not post-
processed.

MC Dropout performs better on
deterministic score since it has
directly been optimised for MSE.

However lacks variability Iin
predictions, I.e., Is overconfident

Parametric and Categorical perform
reasonably well even though
optimised on probabillistic scores
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Spread-Skill Ratio

* MC Dropout has low spread-skill
ratio, seems to evolve independent
of RMSE

* Parametric and Categorical perform
well, reaching >0.9 in some cases
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Continuous Ranked Probability Score (CRPS)

* Parametric forecast shows
advantage of using a Probabillistic
Score (CRPS) as Loss function

* Performance depends on how

well the function represents data
(T, T2M better than 2)

* Categorical has surprisingly good
performance, and is much easier
to implement for all kinds of
distribution
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Global Weather Maps
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 MC Dropout- Smooth realisation with no extremes. Predicts ‘mean’ behaviour

» Parametric, Categorical - Non-smooth. Each grid-point sampled individually

with no covariance learned. Good for local-scale predictions only



Conclusions

* MC Dropout is an improvement over deterministic but remains overconfident.
Better implementations, specifically for ResNet, now available.

* Parametric forecast shows advantages of using a Probabillistic score as loss.
Performance and ease of implementation dependent upon how well data
distribution is represented by a continuous function.

* Categorical forecast is easy to implement, highly flexible, expressive for all
data distributions. Performance dependent upon proper bin-size choice.

Purely data-driven models show reasonable skill and can prove useful for
weather research. They should integrate knowledge from Meteorology in order
to build better uncertainty-aware predictions.



Future Outlook

* Purely data-driven models won’t have enough training data to compete with
NWP models for global medium-range weather forecasting (~103° years)
Useful in nowcasting, subseasonal forecasts, local forecasts, and many more.

As complimentary tool, useful for specific NWP stages: initial conditions
generations, parametrization schemes, post-processing.

* Possible Improvements:
* Pre-training on coarse simulation models, fine-tuning on observations.
* Better boundary conditions: cube-sphered geometry, spherical geometry

* Architectures: Using spatial and temporal indicators such as with U-Nets,
RNNs. For realistic realizations, conditional GANs might perform well
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