Decomposing the time-mean Atlantic Meridional Overturning Circulation and its variability with latitude

Maximum overturning streamfunction with latitude

1/12° HadGEM-GC3.1 data

OXFORD

@tjmor95

- West/East boundary densities.
- Bottom velocities, Wind stress.

 ${ ilde T}_{Est} = T_W + T_E + T_{bot} + T_{Ekm} + T_{AC}$

- → Stability of estimate
- → Significant latitude dependence of contributing components
 - Boundary currents
 - Gulf / Carribean densities significant
 - Decoupling W / E difficult
- → Resolution impacts:
 - ◆ Greater max strm with resolution
 - ◆ Depth coords. (horizontal mixing)
 - Bottom cont. weakens significantly in 1° at high northern latitudes, weak DWBC
 - Bathymetry

tomas.jonathan@earth.ox.ac.uk Tomas Jonathan, Helen Johnson, David Marshall, Mike Bell

Decomposing the time-mean Atlantic Meridional Overturning Circulation and its variability with latitude

Kuhlbrodt et al. 2007

Tomas Jonathan^[1], Mike Bell^[2], Helen Johnson^[1] & David Marshall^[1]

April 26th 2021

University of Oxford ^[1], Met Office ^[2]

Meridional Overturning Circulations (MOCs)

MOCs:

- \rightarrow System of surface and deep currents
- \rightarrow Transport heat, salt, carbon, nutrients etc.
- \rightarrow Connect ocean's surface and atmosphere with deep sea
- \rightarrow Critical to global climate system

Mathematically:

→ Zonally - and depth - integrated northward volume transport

Kuhlbrodt et al. 2007

$$T(z;y)\equiv\int_W^E\int_{-H}^z v_Ndz'dx$$

Atlantic MOC Variability

Temporal:

- \rightarrow Varies on all timescales
- \rightarrow Intra-annual and seasonal: Wind stress
- \rightarrow Inter-annual and decadal: Geostrophic component
- → Centennial: convective mixing in Labrador Sea and NAO -(Vellinga, HadCM3)

Other:

- → Atlantic multidecadal variability (AMO index)
- \rightarrow Possible AMOC slowdown
- \rightarrow Coherence throughout basin
 - Gyres vary at different timescales

Need to distinguish between natural MOC variability and climate change driven variability

https://doi.org/10.22498/pages.24.1.51

What we know

TJ 2021

Foundation

- → Densities and thermal wind used before to reconstruct transport
 - Lee and Marotzke (1998) in the Indian Ocean
 - ♦ Geostrophic RAPID methodology
 - Reducing a complex 3D system down to 2D

 $rac{\partial v}{\partial z} = -rac{g}{
ho_0 f} rac{\partial
ho}{\partial x}$

https://www.rapid.ac.uk/research/tenyearsofrapid.php

https://doi.org/10.22498/pages.24.1.51 Motivation

Decomposition

Describing AMOC in terms of boundary conditions:

- → Eastern and Western boundary densities
- \rightarrow Bottom component
- \rightarrow Ekman transport
- \rightarrow No need to know about conditions on the interior of the domain
- \rightarrow Multiple pairs of eastern and western boundaries possible at depth

 ${ ilde T}_F(z_k;y_j) = T_W(z_k;y_j) + T_E(z_k,y_j) + T_{bot}(z_k;y_j) + T_{Ekm}(z_k;y_j)$ Decomposition allows us to quantify physical processes driving AMOC variability Methods

Calculation

$$\tilde{T}(z;y) = \frac{g}{\rho_0 f(y)} \int_{-H_{\max}(y)}^{z} (z-z') \rho_W(z';y) dz' - \frac{g}{f(y)\rho_0} \int_{-H_{\max}(y)}^{z} (z-z') \rho_E(z';y) dz' + \int_{W(z;y)}^{E(z;y)} Z_{bot}(x,z;y) v_{bot}(x;y) dx - \frac{1}{\rho_0 f(y)} \int_{W(z;y)}^{E(z;y)} \int_{-h(x;y)}^{z} \frac{\tau_S^x(x;y)}{h(x;y)} dz' dx.$$
(1.7)

- \rightarrow We reference the boundary densities to basin average density
- → Application within HadGEM-GC3.1 HighResMIP annual data

Inclusion of "Additional Cells"

 $ilde{T}_F(z_k;y_j) = T_W(z_k;y_j) + T_E(z_k,y_j) + T_{bot}(z_k;y_j) + T_{Ekm}(z_k;y_j) + T_{AC}(z_k;y_j)$

Time-mean view (Latitude - depth)

- → Apply compensation to each term to conserve basin volume
- → Annual-means, HighResMIP project
- → Bottom cmpt. Near 26N similar to Sime (06)

 ${ ilde T}^c_F(z_k;y_j) = T^c_W(z_k;y_j) + T^c_E(z_k,y_j) + T^c_{bot}(z_k;y_j) + T^c_{Ekm}(z_k;y_j) + T^c_{AC}(z_k;y_j)$

Overturning with latitude (e.g. $1/4^{\circ}$)

→ Interesting interplay between boundary density component and bottom component

- → Estimate (purple) and Expected (red) are stable throughout basin (conserve volume)
- → Underlying boundary components evaluated at depth of maximum streamfucntion show significant variation

Decomposing density (W+E) contribution $(1/4^{\circ})$

- → Split density contributions to regions within basin
- \rightarrow MAR W / E (orange yellow)
- \rightarrow West Atlantic (red pink)
- → East Atlantic (green blue)
- → Gulf / Caribbean (salmon red)
- \rightarrow Remainder

Dens Dcmp.

Decomposing density (W+E) contribution $(1/4^{\circ})$

Dens Dcmp.

TJ 20<u>21</u>

Overturning with latitude (resolution comparison)

→ Maximum streamfunction for expected and estimated transports

TJ 2021

Max Strm

Subpolar gyre

Time-average barotropic streamfunction

- \rightarrow Stronger gyre at higher resolutions
- → Greater horizontal circulation (steeper decline of max strm.)
- → Weakness of depth coordinates at high latitudes

Max Strm

Boundary components with resolution

- \rightarrow Ekman cmpt. stable
- → Greater resolution improves density resolution on (especially) eastern boundary of Caribbean islands

- → Additional cell contribution peak in 1° (25°N), narrow shallow channel near Florida
- → Weak bottom cmpt 45°N to 55°N
- → DWBC weak in 1° model

- → Weak bottom cmpt 45°N to 55°N
- → DWBC weak in 1° model
- → Peak in $1/12^{\circ}$ (31.66°) just off Bermuda
- → Significant differences in bottom velocities
- → Bermuda poor in $1/4^{\circ}$, 1° models

Local bathymetry and time-average bottom velocities (northward)

- \rightarrow 1/12° the only resolution with Bermuda as an island
- \rightarrow Superior resolution has dramatic effect on regions bottom velocities

Max Strm

Maximum streamfunction with latitude summary

\rightarrow Stable nature of maximum streamfunction with latitude

- Estimate performs well
- ◆ Conservation of volume possibly? (Ideas??)
- \rightarrow Less coherence with latitude for boundary contributions
 - Impact of boundary currents
 - ◆ Density contribution of GMC and Atlantic boundary

\rightarrow Model resolution impact

- Higher resolution are more competent (gyre circulation)
- ♦ DWBC
- ♦ Boundary densities

Temporal variability at SAMBA array ($1/4^{\circ}$)

→ Maximum streamfunction through time at SAMBA array (components evaluated at depth of estimate maxima)

Correlation of components with time (at SAMBA) $ilde{T}_F(z_k;y_j) = T_W(z_k;y_j) + T_E(z_k,y_j) + T_{bot}(z_k;y_j) + T_{Ekm}(z_k;y_j)$

	1°	$1/4^{\circ}$	$1/12^{\circ}$
vs. \hat{T}_F^c	1.00	0.96	0.96
vs. T_{th}^c	0.58	0.45	0.62
vs. T_{bot}^c	0.32	0.01	-0.15
vs. T_{bot}^c	-0.46	-0.86	-0.84
vs. T_W^c	0.17	0.65	0.39
vs. T_F^c	0.68	-0.03	-0.16

Table 1.3: Correlation between components at SAMBA array (34.5°S, depth of maximum estimated overturning streamfunction)

- → Expected (T ^c) and Estimate (T_F^c) good agreement
- → Density terms seem to dominate temporal variability
- → Close correlation between bottom and density terms (at higher resolution)
 - Density component leads by a few years
 - Previous work eddies in eastern part of section

Maxima and minima years of bottom component

Taking the 5 maximum and minimum years of the bottom component

We analyse:

 \rightarrow Bottom velocities

→ SSH

→ Bottom densities

 \rightarrow Stronger northward and weaker southward for max 5yrs

SAMBA

Maxima and minima years of bottom component

Analyse:

 \rightarrow Bottom velocities

→ SSH

→ Bottom densities

 \rightarrow Contracted sea surface in max 5yrs

Choose time intervals to investigate

Investigate specific periods of time

Analyse anomalies:

- → Bottom velocities
- → SSH
- \rightarrow Bottom densities

- \rightarrow (b), (c) are max to min periods
 - Significant weakening in western section
 - (a) shows opposite trend

TJ 2021

Bottom velocity

Investigate specific periods of time

Analyse anomalies:

- \rightarrow Bottom velocities
- → SSH
- \rightarrow Bottom densities

- \rightarrow (b), (c) are max to min periods
 - Greater weakening in western section
 - More weakening within interior section

SSH

Investigate specific periods of time

Analyse anomalies:

- → Bottom velocities
- → SSH
- → Bottom densities

- \rightarrow (b), (c) are max to min periods
 - Greater weakening (lightening) in western section
 - ◆ (a) positive (heavier) in western section

Bottom density

TJ 2021

Summary

- → Close correlation between bottom cmpt.(purple) and density cmpt. (green)
- \rightarrow Max to min sections:
 - Weakening of bottom velocities in western part of section
 - Greater contraction of SSH
 - Lightening of densities
- → These changes are mainly tied to western part of section near Brazil Malvinas confluence
 - ◆ Max Bot years = strong northward Malvinas current, weaker Brazil current
 - Weak Bot years = weak northward Malvinas current, stronger Brazil current

NERC

SCIENCE OF THE ENVIRONMENT

Met Office