EGU2021-11925: GM2.11 - From historical images to modern high resolution topography: methods and applications in geosciences

Colorisation of Archival Aerial Imagery Using Deep Learning

ISHII Ryusei¹⁾, Patrice Carbonneau²⁾, MIYAMOTO Hitoshi³⁾

1), 3) Shibaura Institute of Technology(SIT), Tokyo, Japan, e-mail: mh21006@shibaura-it.ac.jp¹), miyamo@shibaura-it.ac.jp³) 2) Durham University, Durham, United Kingdom, e-mail: patrice.carbonneau@durham.ac.uk

Research Background & Purposes:

Archival grayscale imagery holds valuable information that pre-dates urban expansion and the worst impacts of climate change.

However, land cover classification to trace longterm historical changes in river basins is difficult from monochrome aerial imagery.

> Archival grayscale imagery of the Kurobe River²⁾ with the SfM processing.

This presentation examines a colorizing method for archival grayscale river basin images in Japan using the Neural Style Transfer (NST)¹ technique.

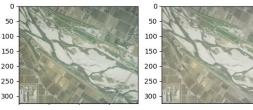
Transfer Learning of NST:

Create Image Tiles:

Extract 63,460 image tiles (100x100pixcels) in the 6 classes from river basin color images

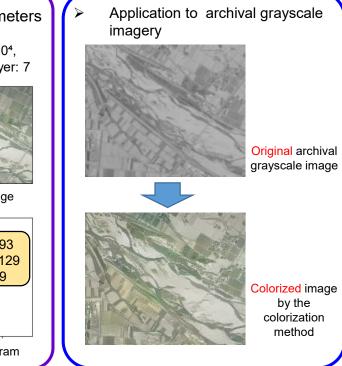
Tree

Grass


Paddy Field

- 2. Transfer Leaning of the CNN used in NST using the image tiles Fine-tune the CNN parameters in NST to derive the optimal model for colorization.
- Analyze the best hyperparameters in NST with decolorized images 3.

Results & Discussion:


Colorization with best hyperparameters \geq

larger style/content weighting ratio: 2.0×10^4 , lower content layer: 6, shallower freeze layer: 7

Colorized Image

				ſ	-	
0		100	(De la Martin	35000 -		
50 -				30000 -		μ = 12.93
100 -				25000 -		Max = 129
150 -				20000 -		σ = 9.29
200 -				15000 -		
250 -				10000 -		
300 -		A. A.	No. to	5000 -		
0	100	200	300	0		
RMSE Distribution					RM	ISE Histogram

Durham

University

Department of Geography

Concluding Remarks:

Input Image

- The fine-tuning of CNN in NST resulted in the F1-score of 0.957.
- The resultant land cover classification has much improved from F1 of 0.541 in original grayscale images to F1 of 0.804 in their colorized images.

SIT SHIBAURA INSTITUTE OF TECHNOLOGY

Reference: 1) L. A. Gatys, et al. A neural algorithm of artistic style, ArXiv e-prints, 2015. 2) Geospatial Information Authority of Japan: https://www.gsi.go.jp/ENGLISH/index.html.