EGU21-11936

Magneto-inertial waves and planetary rotation

by J. Rekier, S. A. Triana, and V. Dehant **Royal Observatory of Belgium**

EGU General 2021

26 April 2021

Motivation

- of the Earth's rotation.
- of the planet and each of its independent layers.
- Sasao et al. make the following assumptions:
 - The flow inside the liquid core has a uniform vorticity (Poincaré flow)
 - The flattening of the Earth is small (first order computation)
 - Forces on the core flow are represented by additional torques at the CMB/ICB (viscous, electromagnetic, etc.)

• This work is part of a long-term effort undertaken at ROB to develop an improved model

• Current models are based on Sasao et al. (1981). Rotation is represented by a set of coupled Liouville equations expressing the conservation of the Angular Momentum (AM)

Motivation

- *Nutation* data \rightarrow additional elements of formalism are required.
- Core Nutation (FCN), etc.
- Question: Can we extend the formalism of Sasao et al. in order to integrate those elements of formalism?
- this has the merit to make the link with fluid dynamics conceptually simpler.
- the simplest IM, the Spin-Over Mode (SOM) of a freely rotating planet.

• The model based on Sasao et al, though very convenient, cannot, on its own, account for some of the phenomena observed in the *Length Of Day* (LOD), *Polar Motion* (PM) and

• E.g. interdecadal (~6yrs) oscillations in LOD, possible modulation in amplitude of the *Free*

• Smith & Dahlen (1981) suggested a model equivalent to Sasao et al. which they called the HLL model (standing for Hough, Love & Larmor). Though less versatile than Sasao et al.,

• In Rekier et al. (2020), we used a similar formalism to clarify the link between the FCN and the *Inertial Modes* (IM). More specifically, we showed how the FCN is the equivalent to

- We extend the work presented in Rekier et al. (2020) to include the effects of the Lorentz force produced by a background magnetic field.
- We start by looking at IM with uniform vorticity: SOM + *Near-Geostrophic Mode* (NGM) (see later).
- Exact analytical solutions allow us to explore the full range of parameters.

Content and model

 $i\omega \mathbf{u} + 2\hat{\mathbf{z}} \times \mathbf{u} + \nabla p + i\omega \mathbf{m} \times \mathbf{r} = \text{Le}^2 (\nabla \times \mathbf{B}) \times \mathbf{B}$ $i\omega \mathbf{B} = \nabla \times (\mathbf{u} \times \mathbf{B})$

Purely hydrodynamic case $(\mathbf{B} = \mathbf{0})$

Rekier et al. (2020):Uniform volAM conse

Three solutions \rightarrow

Uniform vorticity flow: $\mathbf{u} = \mathbf{w} \times \mathbf{r} + \nabla \psi$ (Poincaré) AM conservation: $i\omega \mathbf{L} = -\hat{\Omega} \times \mathbf{L}$ (Euler-Liouville)

Core

$$\omega = \omega_{\text{FCN}} \approx -1$$

$$\omega = \omega_{\text{CW}} \approx 0$$

$$\omega = 0 \quad \equiv \text{ geostrophic flow}$$

Lorentz force

- The exact shape of the magnetic field inside the core is unknown.
- equation:

Once **b** is known, we immediately obtain the Lorentz force:

$$\mathrm{Le}^2\left(\nabla \times \mathbf{B}_{\mathrm{C}}\right)$$

boundary condition $\mathbf{B}_0 \cdot \mathbf{n} = 0$, which also implies (from induction equation): $\mathbf{b} \cdot \mathbf{n} = 0$.

Once we have chosen the form of ${f B}_0$, the increment, we obtain ${f b}$ directly from the (ideal) induction

 $\mathbf{b} = \frac{1}{i\omega} \nabla \times \left(\mathbf{u} \times \mathbf{B}_0 \right)$

 $_{0} \times \mathbf{b} + \nabla \times \mathbf{b} \times \mathbf{B}_{0}$

• A uniform magnetic field $\mathbf{B}_0 = \mathbf{cst}$ produces no Lorentz force. The next simplest form is the Malkus field:

 $\nabla \times \mathbf{B}_0 = \mathbf{j}$ with $\mathbf{j} = \mathbf{cst}$

• Malkus (1967) used $\mathbf{j} = \hat{\mathbf{z}}$, in what follows, we use a general shape for an arbitrary \mathbf{j} , that satisfies the

Lorentz force

- Adding the above matrix and solving for \mathbf{m} and \mathbf{w} gives the free rotational modes accounting for the presence of the Lorentz force.
- We start by looking at the steadily rotation solutions for which $\mathbf{m} = \mathbf{0}$. To simplify further, we set:

 $\mathbf{j} = \sin\theta \hat{\mathbf{x}} + \cos\theta \hat{\mathbf{z}}$

Background magnetic field

$$\mathbf{B}_{0} = -\frac{y\cos(\theta)(-A_{\mathrm{f}} + B_{\mathrm{f}} + C_{\mathrm{f}})}{C_{\mathrm{f}}}\hat{\mathbf{x}} + \frac{(A_{\mathrm{f}} - B_{\mathrm{f}} + C_{\mathrm{f}})(A_{\mathrm{f}}x\cos(\theta) - C_{\mathrm{f}}z\sin(\theta))}{A_{\mathrm{f}}C_{\mathrm{f}}}\hat{\mathbf{y}} + \frac{y\sin(\theta)(A_{\mathrm{f}} + B_{\mathrm{f}} - C_{\mathrm{f}})}{A_{\mathrm{f}}}\hat{\mathbf{z}}$$

 $\mathbf{j} = \sin\theta \hat{\mathbf{x}} + \cos\theta \hat{\mathbf{z}}$

Steady rotation axisymmetric core ($A_{\rm f} = B_{\rm f}$)

 $\text{Im}[\omega]$

 $\Theta = \mathbf{0}$.

- The magnetic field significantly alters the SOM frequency (left) for $\theta \sim 0$ but this influence diminishes for larger θ
- The SOM frequency remains real $\forall \theta$
- The magnetic field turns the geostrophic flow into a NGM (right)
- The NGM frequency becomes complex for $\theta \in \left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$

Steady rotation axisymmetric core ($A_{\rm f} = B_{\rm f}$)

 $\Theta = 0.981748$

- The magnetic field significantly alters the SOM frequency (left) for $\theta \sim 0$ but this influence diminishes for larger θ
- The SOM frequency remains real $\forall \theta$
- The magnetic field turns the geostrophic flow into a NGM (right)
- The NGM frequency becomes $\frac{\pi}{4}, \frac{3\pi}{4}$ *complex* for $\theta \in$ 4

Free rotation ($A_{\rm f}=A/10$, "Earth-like") axisymmetric core ($A_{\rm f}=B_{\rm f}$ and ${\rm A}={\rm B}={\rm C}$)

- The magnetic field significantly alters the FCN frequency (left) for $\theta \sim 0$ but this influence diminishes for larger θ
- The FCN frequency remains real $\forall \theta$
- The magnetic field turns the geostrophic flow into a F(ree)NGM (right)
- The FNGM frequency becomes complex for $\theta \in \left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$

Free rotation ($A_{\rm f}=A/10$, "Earth-like") axisymmetric core ($A_{\rm f}=B_{\rm f}$ and ${\rm A}={\rm B}={\rm C}$)

 $\operatorname{Re}[\omega]$

 $\text{Im}[\omega]$

 $\text{Im}[\omega]$

 $\Theta = 0.981748$

- The magnetic field significantly alters the FCN frequency (left) for $\theta \sim 0$ but this influence diminishes for larger θ
- The FCN frequency remains real $\forall \theta$
- The magnetic field turns the geostrophic flow into a F(ree)NGM (right)
- The FNGM frequency becomes complex for $\theta \in \left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$

Free rotation axisymmetric core ($A_{\rm f}=B_{\rm f}$)

- The change in the frequencies depends on both the magnetic field amplitude and on its orientation
- $|\omega_{fcn} \omega_{som}|$ depends very weakly on θ for Le² \ll 1 and very strongly for Le² \ge 1
- $|\omega_{\rm fngm} \omega_{\rm ngm}|$ depends very strongly on θ for all values of ${\rm Le}^2$

Free rotation axisymmetric core ($A_{\rm f} = B_{\rm f}$)

- The change in the frequencies depends on both the magnetic field amplitude and on its orientation
- $|\omega_{\rm fcn} \omega_{\rm som}|$ depends very weakly on θ for Le² \ll 1 and very strongly for $Le^2 \ge 1$
- $|\omega_{\rm fngm} \omega_{\rm ngm}|$ depends very strongly on θ for all values of Le²

 $C_f - A_f$

Conclusions

- core volume have very little effects on the FCN frequency
- which, under certain conditions, may become destabilised

What's next?

- Lorentz force by combination with the Malkus field inducing current: $\mathbf{j} \times \mathbf{b}$

 \rightarrow 3 contribution from Inertial modes ?

• Introduce magnetic diffusivity and viscosity (requires numerical resolution)

 \rightarrow on this subject see presentation of Triana et al. (EGU21-12492, this session)

• Perturbations induced by a (Malkus) toroidal field on the uniform vorticity flow inside the

• They do, however, cause the appearance of a near-geostrophic (long period) mode

• Although a uniform magnetic field exerts no Lorentz force on its own, it can create a

• Reintroduce the Electro-Magnetic torque acting on an electrically conducting mantle