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Motivation

The Central Andes are characterized by steep climatic and environmental gradients with
large spatial and temporal variations of associated hydrometeorological parameters. There
are two main atmospheric processes that influence climate conditions in our study area in
the south-central Andes: the South American Monsoon System that transports moisture via
the low-level jet and the orographic barrier of the Eastern Cordillera that forces orographic
rainfall at the windward facing slopes.

The main objectives of this study are:

1) Monitoring of Integrated Water Vapour (IWV) using an extended GNSS network.
2) Examination of IWV behaviour across the climatic gradient.

3) Tracking and analysis of water vapour propagation.

4) Correlation between wet gradient and surface wind vectors.
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Figure 1: GNSS-derived IWV estimates from four stations lying across East-West direction
and along the topographic gradient during two events in 2013. The location of the stations
is shown in Figure 3 with the two corresponding colors.

On the left side of Figure 1 it is shown that there is a clear propagation direction from East
to the West, which coincides with the seasonal trend of the wind directions during Austral
summer. On the right side, the moisture propagation is from West to East, because of a
reversed pressure gradient during the Austral winter..
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Figure 2: IWV time series decomposition for the stations UNSA and SALC, according to their
spectral patterns.

The IWV time series were separated into signals corresponding to low and high
frequencies, using a 2" order Butterworth filter. The prior show signals that have periods

longer than 100 days and they are related to the seasonal oscillation. The latter are related
to shorter periods and they can be associated with synoptic weather events. The behaviour
of each time series is highly dependent on the location of the corresponding station. At
UNSA station (left), which is located on the foothills of the Andes, the signal oscillates
sinusoidally and the amplitude of its high-frequency responses (residuals) is slightly smaller
during winter period. At SALC station (right), which is located in the Andean plateau at a
high altitude, the signal flattens during winter and rises during summer period.
Additionally, the amplitude of its residuals is significantly larger during summer.

Conclusions

e GNSS can track moisture propagation with better temporal resolution than reanalysis
data.

e |WV follows seasonal patterns and their shape depends on the topography of the station.
e Wet gradients are affected by the topography in the vicinity of the station.

e Wind directions can be traced by wet gradients over both long and short periods.
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Data Calculation
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-62.5° All data was calculated with the
following strategy:
e GNSS data were used for the

calculation of zenith delays and
59 50| gradients
2 e ECMWF's ERA5 reanalysis data

inserted in ray-tracing algorithm for the
calculation of zenith dry delays and their
gradient components

e The wet delays were calculated as
follows:

Dwet = Drotar-gnss - DDry—ERAS

Figure 3: GNSS ground stations installed
in March 2019 (yellow) and ground
stations  from Nevada  Geodetic
Laboratory network (red) located in the
wider area of northwestern Argentina.
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Figure 4: Wind (left) and wet gradient (right) direction distributions plotted together with
the topographic shielding.

Our analysis shows a clear corrleation between the reversed wind vectors and wet
gradients calculated from GNSS and ERAS data. We show that water vapour and rain can be
tracked during both winter and summer season.
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Figure 5: Single-epoch directional similarities between wet gradients and wind vectors (left)
and their distribution (right).

The next step of our research was the single-epoch comparison of the wet gradient's
directions and the wind vectors. In order to define a similarity measure, we calculated the
cosine of the angle between both directions. The wet gradients with small magnitudes
were excluded because the impact of random errors on their directions is high. Similarity
values close to 1 show that the vectors are anti-parallel, while values close to -1 show that
the vectors are collinear. Both graphs in Figure 5 show that there is high probability of
having either very high or very low directional similatiry. In the first case we can track
moisture traveling towards the GNSS station, while in the second case the masses tracked
are leaving the station behind.
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