

ROBOMINERS Resilient Bio-inspired Modular Robotic Miners

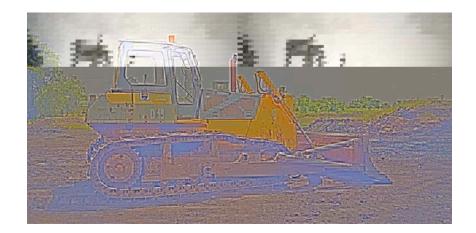
Luís Lopes and ROBOMINERS consortium

#vEGU21: Engage • Discover • Inspire

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 820971.

Project's quick facts

- Call Topic: SC5-09-2018-2019 "New solutions for sustainable production of raw materials" (RIA)
- Project duration: 48 months
- Start date: 1st June 2019
- Project total cost/ EU contribution : 7,4 M€
- Coordinating entity: Universidad Politécnica de Madrid
- Country: Spain
- Project website: <u>www.robominers.eu</u>
- 14 partners, 11 European countries
 - Geo-scientific SMEs (LPRC, GEOM, KUTEC, RCI)
 - Academics covering both mining (UNIM, MUL) and robotics (UPM, TALL, TUT)
 - Non-governmental (ASSIM, EFG)
 - Governmental (GeoZS, RBINS, IGSMIE)


Project context and approach

EU is dependent on the import of many mineral raw materials essential for industry, green energy, etc Enabling EU access to mineral raw materials (including critical/strategic raw materials) from domestic resources is a step recognized under the EU raw materials policy ROBOMINERS develops a bioinspired, modular and reconfigurable robot-miner capable of mining underground, underwater, in slurries or above water

Proof of concept will be delivered as a robot designed and constructed as a result of merging technologies from advanced robotics, mechatronics and mining engineering ROBOMINERS targets abandoned mines, mines at ultra depths and small deposits to be exploitable in a cost-efficient manner

2017 CRMs (27)			
Antimony	Fluorspar	LREEs	Phosphorus
Baryte	Gallium	Magnesium	Scandium
Beryllium	Germanium	Natural graphite	Silicon metal
Bismuth	Hafnium	Natural rubber	Tantalum
Borate	Helium	Niobium	Tungsten
Cobalt	HREEs	PGMs	Vanadium
Coking coal	Indium	Phosphate rock	

EU Critical Raw Materials list 2017

Overall objectives

To develop a **bio-inspired**, **modular** and **reconfigurable** robotminer

For small and difficult to access deposits

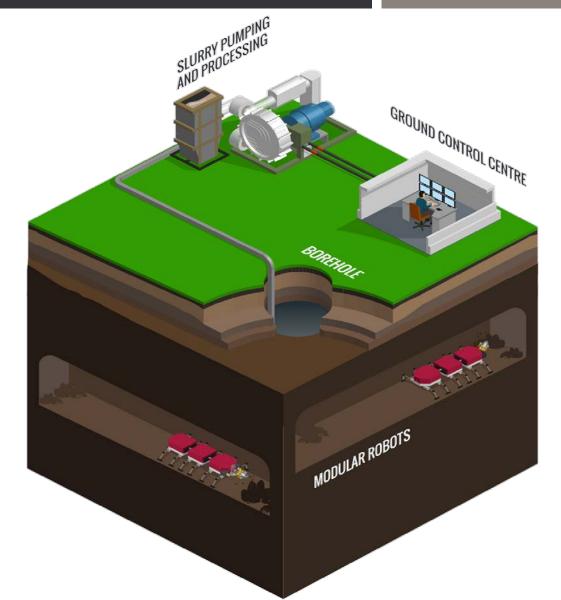
Equipped with **selective mining** perception and mining tools

That can be **delivered in modules** to the mineral deposit via a large diameter borehole

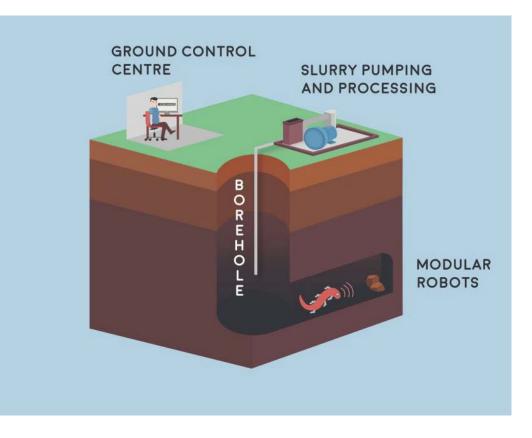
Mining underground, underwater, in slurries or above water

Specific objectives

- Build a fully functional modular robot-miner prototype capable of operating, navigating and performing selective mining
 - Validate all key functions of the robot-miner to a level of TRL-4
 - Design a mining system of expected future upstream/downstream raw materials processes via simulations, modelling and virtual prototyping


- Use the prototypes to study and advance future research challenges on
 - scalability, resilience, re-configurability, self-repair, collective behavior, operation in harsh environments,
 - selective mining,
 - production methods,
 - necessary converging technologies on an overall mining system level

New mining concept, proven in laboratory conditions, capable of changing the scenario of mineral exploitation

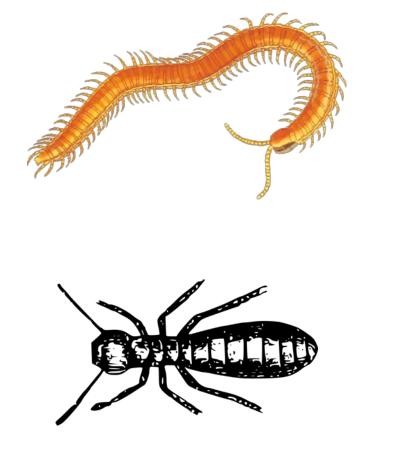


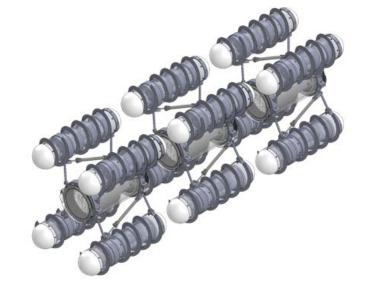
- 1. Robot parts (modules) are sent underground via a borehole
- 2. They self-assemble to form a fully funcional modular robot
- 3. Using specialised sensing devices, they detect ore
- 4. Using ad-hoc production devices, they produce slurry that is pumped out
- 5. They can re-configure on-the-job

Mining outline

- Powered by a water hydraulic drivetrain and artificial muscles, the robot will have high power density and environmentally safe operation
- Situational awareness and sensing will be provided by novel body sensors that will merge data in real-time
- Together with specific production tools, they will enable selective mining, optimising the rate of production and selection between different methods
- The produced mineral concentrate slurry is pumped to the surface, where it will be processed
- The waste slurry could then be returned to the mine where it will backfill mined-out areas

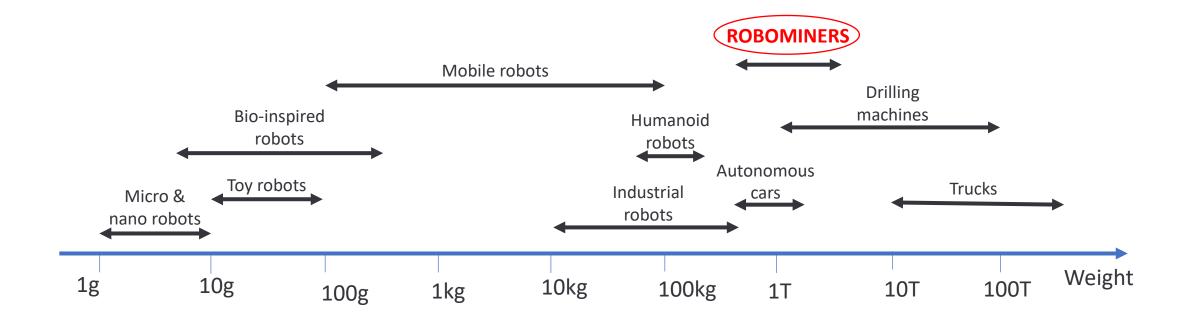
Impacts


- Opening up the possibility to exploit any remaining reserves despite the size and geometry of deposit
- Addressing many of the environmental concerns that are associated with conventional mining
- Positive economic impact in many regions where the potential for developing mining activities exist, contributing directly and indirectly to economical, social and environmental positive impacts
- Create potential for research, innovation, new technology and business development, not just in mining, but also other applications where resilient modular robotics could be important, such as mine rescue, disaster relief or space research



The miner

• Bio-inspired, modular and reconfigurable



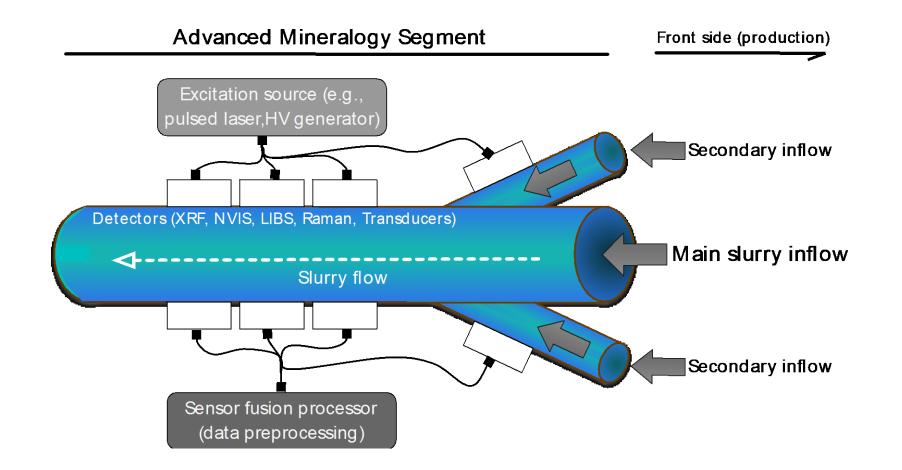
Tech specs:

- 0.5-1 ton
- 20-30 kW
- Hydraulic
- Tethered

• Big robot, small mining machine

Instrumentation strategies for **in-stream** elemental analysis:

 high sensitivity solid state XRF spectrometer / LIBS spectrometer and Gamma-Ray spectrometer.


Instrumentation strategies for **in-stream** molecular analysis:

• Optical UV-VIR-NIR techniques, including Resonance UV Raman spectroscopy, time resolved VIS Raman spectroscopy, NIR absorption spectroscopy and LINF spectroscopy.

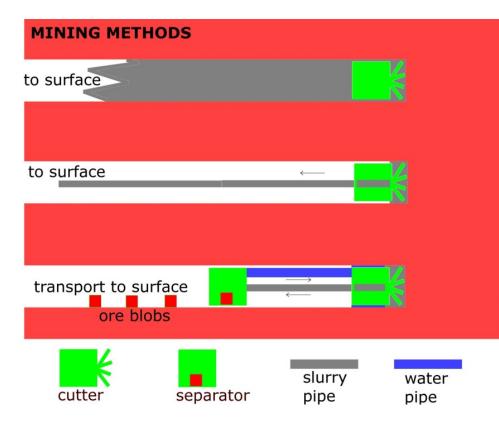
Selective mining/1: sensing

• "Digestive" mineralogy

Selective mining/2: production

Production tools

- Tricone drill bit
- Hydrodemolition
- Cavitation
- Micro-blasting?



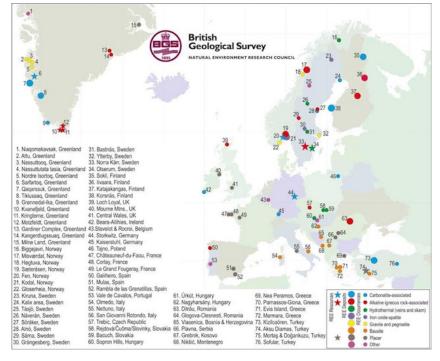
Need of a new approach to mining strategy and mine design

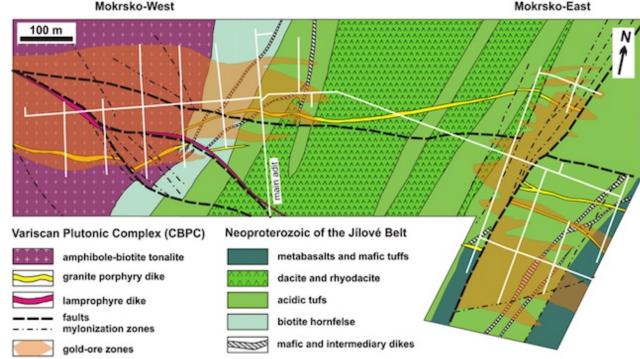
- Studying and simulating the various systems components in future mining scenarios
- Creating a **simulated environment for the entire mining operation,** considering
 - drilling methods
 - mineral exploration
 - minerals processing and transport options
 - power supply scenarios
 - mine design and mine geometry
- Micro and macroeconomics studies
- Inventory of relevant deposits

SIMIO simulation, by RCI

Targeted mines

• Abandoned mines. ROBOMINERS presents a solution for reopening many of Europe's abandoned underground mines, without the need for a full recommissioning and in particular without the need to dewater the mine.




Left: Metals mined from the Cornwall mineralised belt. Right: Ruins of the abandoned Botallack Mine in Cornwall. Operating from the 1500s to 1895, Botallack was once one of the greatest copper and tin mines in England

Targeted mines

• Small but high grade mineral deposits. The proposed technology does not require the development of any mine infrastructure and even very small deposits can be mined.

Locations of the enrichments of rare earth elements in Europe. Geological map of the Mokrsko-West and Mokrsko-East deposits (horizontal section at ca. 300 m a.s.l.)

Targeted mines

• **Ultra depth.** Under this application scenario a large diameter borehole will be drilled from the surface to the deep-seated deposit.

Extension of the Kupferschiefer Formation

- Suitability of ore deposits for the ROBOMINERS technology is based on:
 - specific metal value of the ore and other market conditions
 - favourable geotechnical properties
 - commercial technologies to extract and refine metals from ores
- Possible scenarios to apply ROBOMINERS technology include:
 - operating and abandoned mines or mine-sections with known remaining resources
 - unexplored or explored non-economic occurrences by conventional methods
 - not accessible and hazardous environments
 - mining in areas requiring minimum surface footprint

Magmatic deposits

 e.g. Carbonatitealkaline intrusion, Orthomagmatic Cu-Ni-Fe-Pt deposits

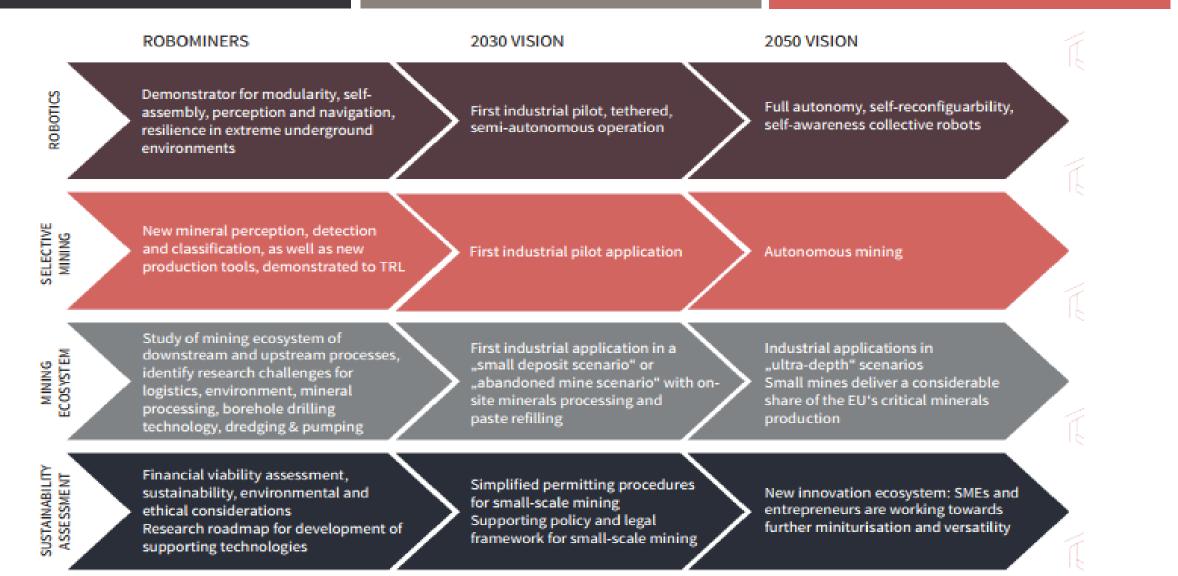
Magmatic-hydrothermal deposits

 e.g. Pegmatite deposits, Epithermal deposits, Skarn

Hydrothermal deposits

 e.g. Vein association deposits, Orogenic gold deposits

Sedimentary deposits


• e.g. Bauxite deposits

- Required capabilities include:
 - advance directional drilling (cm to m ahead) to identify continuation direction of an ore body
 - real-time chemical analysis for multiple target elements
 - real-time mineralogical analysis
 - underwater operational capability (for deep vein and stratiform deposits)
 - video camera(s) for hazard detection
 - first-stage mineral processing to separate a concentrate feed from waste rock
 - capability to move vertically as well as horizontally
 - slurry pumping system to bring mineral concentrates to surface & waste rock slurry to a backfill
 - rock-bolting or other tunnel stabilisation system to maintain structural integrity of the mine
 - battery recharge system
 - location method in the absence of GPS
 - communication system between the robots and the surface control room

Vision

Getting involved in ROBOMINERS development

- Clustering
 - With other EU projects
 - With European initiatives on Robotics and Raw Materials
 - With international projects
- Technology foresight tasks
 - Focus groups meetings
 - Delphi survey online
 - Visioning workshops
 - Roadmapping workshops

Want to get involved in the project's activities and participate in workshops and online discussions on ROBOMINERS, raw materials and robotics?

Contact Luís Lopes luislopes@lapalmacentre.eu

Learn more and stay tuned


- Website: <u>https://robominers.eu/</u>
- Twitter: @robominers
- Facebook: @robominers
- LinkedIn: @ROBOMINERSproject
- YouTube: ROBOMINERS Project
 - Video: <u>https://www.youtube.com/watch?v=BlcnObHfCyA</u>

Thank you !

