Representing chemical history of ozone
a method development study for deep learning models
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Outline L

Overall goal

Improve quality of station based near-surface ozone predictions

Goal of this method development study

= Design different concepts of representing chemical history of air parcel (capturing transport)
= Benchmark concepts against baseline model which is not aware of chemical history
= Compare the change in prediction quality

General prediction task

"Use chemical and meteorological model data of the past few hours to predict near-surface ozone
concentrations for a lead time of up to two hours”
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XTIME = 2009-01-01T01:00:00, bottom_top = 0

Data: WRF-Chem simulation

Model data

= We use WRF-Chem data as the gridded
model data provides an internally
consistent dataset with complete spatial
coverage and no missing values

= Changes in forecasting performance can
be attributed to concepts rather than a
change in data availability (irregular

distribution of measurement stations) \ 3
= Short period where advection is dominant | P T e e Y
(Jan to Mar 2009) ' ' " 03 [ppmv] ' '

In this study, we use model data (see also [3]) to train neural networks. Later on, we will apply the
best working concept to measurement data of the Tropospheric Ozone Assessment Report
(TOAR) database [6], e.g. to improve the IntelliO3-ts model [2].
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Supervised machine learning L

Supervised machine learning approach

= Task: Find unknown function f which maps input pattern (X) to corresponding labels/ ground
truth (y)

= Machine learning model is estimator (f) which maps X to an estimate y of the ground truth
= Goodness of estimate quantified by error/ loss function
= Generally ground truth and estimates differ f (X) =y # § = f(X)

None neural network competitor models

= Ordinary least-squares (ols)
= Persistence (persi)
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Learning Framework: MLAir MI'A’L

= We carry out our experiments with MLAir [5]
= We extended the code to represent chemical history (DataHandlers)

Visualization of the MLAIr standard setup (from [5, Fig. 1])
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Baseline model (7,)

L

= Data from 8 surface grid boxes
= [nput (X)
= Variables: Oz, NO, NO,, CO, T2, wdir10,
wspd10, PSFC, PBLH, CLDFRA
= Time: t_g to fy, hourly
= Shape:
(# samples, # prev time steps, 1, # vars)

= Target variable (y): Og for t; to

train - val test
2l I
2009-01-01 2009-01-15 2009-02-01 2009-02-15 2009-03-01 2009-03-15 2009-04-01
Data split
UNIVERSITAT

Member of the Helmholtz Association

= 2x CNN layers [4] where vars are used as
channels

= 3 x 1 kernel, 16 and 32 filters
= Symmetric padding, ELU activation [1]
m 2x FC layer, ELU and linear activation

Baseline prediction task

"Use chemical and meteorological model data

of the past few hours at a specific grid box to
predict near-surface ozone concentrations for a
lead time of up to two hours at that particular
grid box.”
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Representing chemical history L

= The ozone concentration at a particular point in space and time depends on the chemical
history of an air parcel (where it has been before).

= The baseline model only captures the history of the fixed grid box rather than the air parcel.
— |deally we would use backward trajectories

= Backward trajectories require full field of model data (not directly available when using
measurement data)

= Approximation by wind sector
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Sectorial preprocessing
Exemplary point of interest (POI)

— ] BENNE E DsEis Bswlw NW]
20 40 60 80 100 200 300
dist [km] bearing [°] wind_sectors
= Distance from POl to = Bearing from POl to = Assign each grid box to
neighbouring grid boxes neighbouring grid boxes a sector used for
(here max. 100 km) aggregation
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Sector model (f;)
Data preprocessing

= Data of Baseline Model

+ Aggregated (mean) data of each var from
upstream sector determined by wind direction
at fp e.g. mean over N sector (see right figure
as an example for O3)

= Used as additional variables (channels in
neural network) — 20 variables (10 (grid box)
+10 (sector))

— Additional variables represent sector

l

0.0070 0.0075 0.0080 0.0085 0.0090 0.0095 0.0100 0.0105 0.0110
03 [ppmv]

Sector prediction task

"Use chemical and meteorological model data of the past few hours at a specific grid box and
spatially aggregated sector data of the current wind direction (upstream) to predict near-surface
ozone concentrations for a lead time of up to two hours at that particular grid box.”
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Extended sector model ()

Data preprocessing

= Data of Baseline model
= Data of Sector model
+ Sector data of the two adjacent sectors
= Aggregated (mean) data of each variable from adjacent sectors of wind direction at # (left and right
sectors, e.g. NW, and NE if main sector is N)
= Used as additional variables (channels in neural network) — 40 variables (10 (grid box) +10 (main
sector) +10 (left sector) +10 (right sector))

Extended sector prediction task

"Use chemical and meteorological model data of the past few hours at a specific grid box, spatially
aggregated sector data of the current wind direction (upstream) and spatially aggregated sector
data of the two adjacent sectors to predict near-surface ozone concentrations for a lead time of up
to two hours at that particular grid box.”
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Results: Model comparison ML

Sector model Extended sector model

summary of all stations
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Sector model - importance of variables
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Extended sector model - importance of variabIer"-

Bootstrap

?es(Xbc,ot) VS. ?es(Xo,ig): negative skill score = important variable
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Summary & Outlook

L

= Including aggregated information of one
sector improves the forecast

= Including neighbouring sectors do not
further improve the forecasts

= |nfluence of sector variables differ

= Adding information of one sector seems to
be promising also for larger networks
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= [ncrease of lead time

= Perform experiments on larger data set
(expected to beat ols)

= Implement spatial interpolation as
proposed by [7]

= |ntegration of best working method into
IntelliO3-ts [2]
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