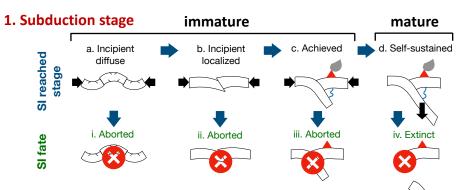


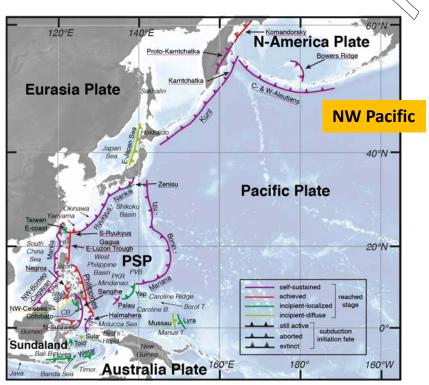
## Lessons learned from the study of 68 Cenozoic occurrences of subduction initiation

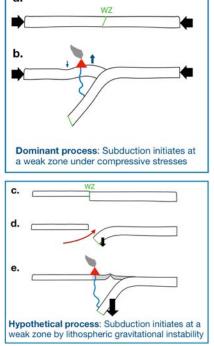


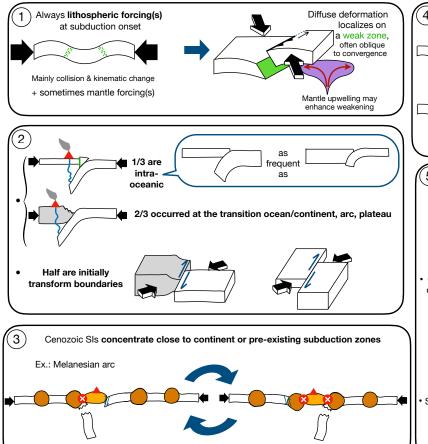
No characteristic time for SI

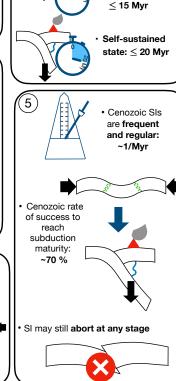

stages, from 1 to 50 Myr each

Usually:


subduction


magmatism:


Serge Lallemand & Diane Arcay

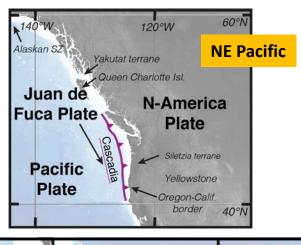


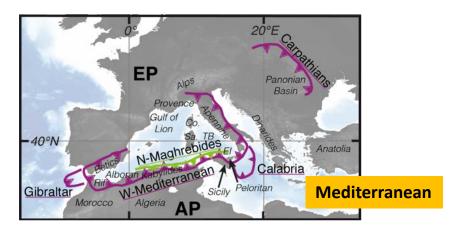

- → 70 Cenozoic subduction initiation cases (70,350 km): 41 immature + 29 mature (2/3 still active)
- 2. Geodynamic setting at (or far from) an ocean-continent/arc transition (rifted margin, TF, SC ...)?
- 3. SI triggers lithospheric (collision, kinematic change ...) and/or mantle (plume ...) forcing?
- **4. SI deformation modes and spatial expression** change in fault kinematics or not, flip, jump, lateral propagation, TF conversion ... ?
- 5. SI age and duration of each stage
- 6. Age of subducting and overriding plates at SI
- 7. State of stress at SI

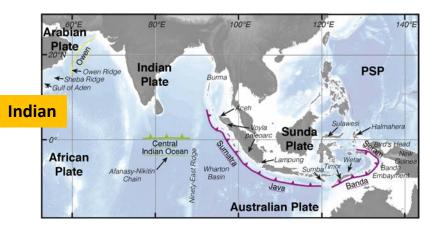




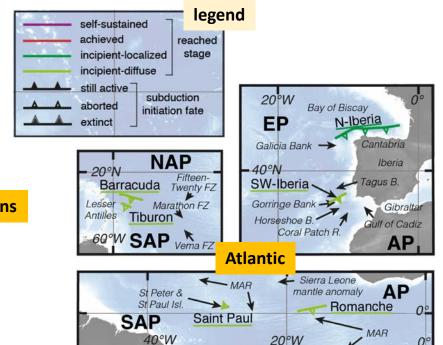


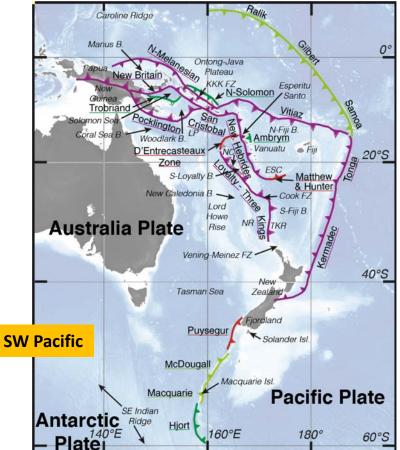






## Additional display material














S-America Plate

Scotia
Plate

Scotia
Plate

Scotia
Sea

SP

Scotia
Scotia
Sea

SP

Scotia
Scotia
Sea

SP

Scotia
Scotia
Sea

SP

Scotia

Atlantic
Ocean
Antarctica
Antarctica

Antarctica

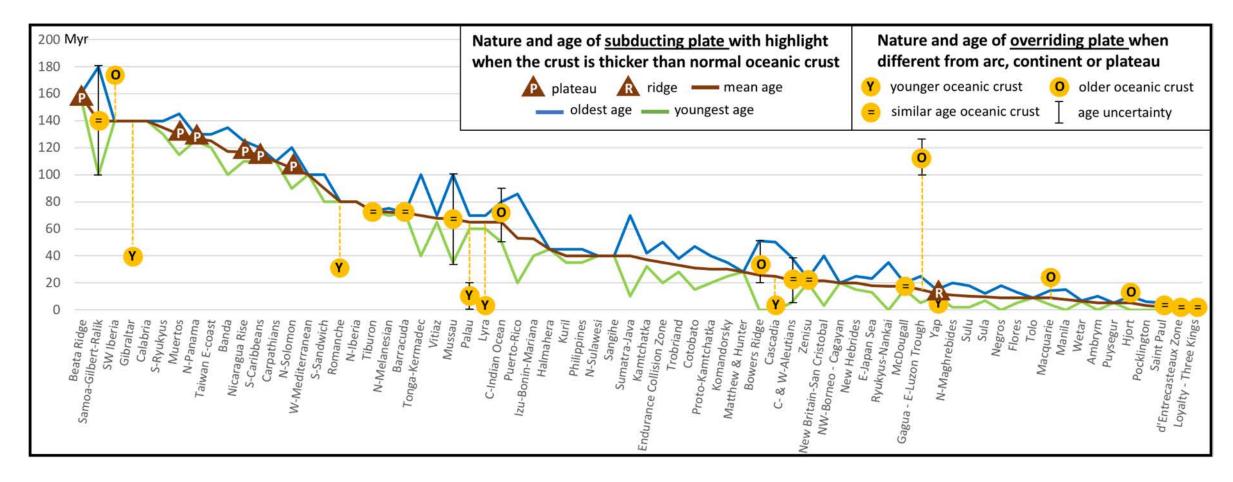
Antarctica

Plate Wedell Sea

20°W

Present-day location of the 70 subduction zones initiated during the Cenozoic (the NW Pacific area is in the main presentation slide)

|              |                                                                   | Triggers                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                          |                                                                                                       |                                                |                                                                                                                                                           |                                                                                                                 |                                                                            |  |  |
|--------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|
|              |                                                                   |                                                                                                                                                                                                                                                                                                                                                                  | Lithospheric forcing                                                                                                                                                                                                                     | 3                                                                                                     |                                                |                                                                                                                                                           | Mantle forcing                                                                                                  |                                                                            |  |  |
|              | ↓ SI settings SI forcings →                                       | Local or nearby collision                                                                                                                                                                                                                                                                                                                                        | Far-field kinematic change                                                                                                                                                                                                               | Delamination                                                                                          | Sedimentary loading                            | Plume- or SC- induced                                                                                                                                     | Mantle flow - triggered                                                                                         | Slab breakoff -<br>triggered                                               |  |  |
|              | Rifted margin (including rear-arc)                                | Proto-Kamtchatka, Kuril, S-Ryukyus, Zenisu, Taiwan E-coast, Philippines, Flores, Wetar, Sula, Sulu, N-Sulawesi, Tolo, Sangihe, Halmahera, N- Melanesian, Vitiaz, New Britain-San Cristobal (incl. S-Solomon), Trobriand, New Hebrides, Ambrym (incl. Pentecost- Maeowo), S-Caribbeans, W- Mediterranean, Gibraltar, Calabria, N- Maghrebides (Alboran to Sicily) | E-Japan Sea, S-Ryukyus, NW-Borneo -<br>Cagayan, Pocklington, New Britain-San<br>Cristobal (incl. S-Solomon), Trobriand,<br>New Hebrides, Loyalty - Three Kings, N-<br>Iberia, SW Iberia (incl. Gorringe),<br>Endurance Collision Zone    | S-Caribbeans, SW lberia<br>(Incl. Gorringe), N-<br>Maghrebides (Alboran to<br>Sicily)                 | Philippines, Sula, N-<br>Sulawesi, Tolo        | <u>Pocklington</u>                                                                                                                                        | E-Japan Sea, NW-Borneo Cagayan, Sangihe, Halmahera, New Hebrides, Endurance Collision Zone, Gibraltar, Calabria | Taiwan E-coast, N-<br>Melanesian, N-<br>Maghrebides<br>(Alboran to Sicily) |  |  |
| At OCT       | Transform margin (including ocean-continent STEP fault)           | S-Ryukyus, Zenisu, Manila, Philippines,<br>Sula, Sangihe, Halmahera, Banda (incl.<br>Seram), S-Caribbeans, <u>Muertos</u> , Puerto-<br>Rico, <u>Nicaragua Rise</u> , <u>Carpathians</u> , <u>W-<br/>Mediterranean</u> , <u>Gibraltar</u> , Calabria, N-<br><u>Maghrebides</u> (Alboran to Sicily)                                                                | E-Japan Sea, S-Ryukyus, Manila,<br>Negros, Cotobato, NW-Borneo -<br>Cagayan, Tonga-Kermadec, Puysegur,<br>Puerto-Rico, SW Iberia (Incl. Gorringe)                                                                                        | Tonga-Kermadec, S-<br>Caribbeans, SW Iberia (incl.<br>Gorringe), N-Maghrebides<br>(Alboran to Sicily) | Cotobato, Philippines, Sula,<br>Tonga-Kermadec | Manila, <mark>Negros,</mark> Tonga-<br>Kermadec                                                                                                           | E-Japan Sea, NW-Borneo -<br>Cagayan, Sangihe,<br>Halmahera, Tonga-<br>Kermadec, <u>Gibraltar</u> ,<br>Calabria  | Puerto-Rico, N-<br>Maghrebides<br>(Alboran to Sicily)                      |  |  |
|              | Former subduction zone                                            | Komandorsky, Kamtchatka, Cascadia,<br>New Britain-San Cristobal (incl. S-<br>Solomon), New Hebrides, Sunda, Banda<br>(incl. Seram)                                                                                                                                                                                                                               | Ryukyus-Nankai, New Britain-San<br>Cristobal (incl. S-Solomon), New<br>Hebrides, Tonga-Kermadec                                                                                                                                          | Tonga-Kermadec                                                                                        | Tonga-Kermadec                                 | Cascadia, Tonga-<br>Kermadec                                                                                                                              | New Hebrides, Tonga-<br>Kermadec                                                                                | Ryukyus-Nankai                                                             |  |  |
|              | Ridge flank (terrane)                                             | Cascadia, N-Solomon, S-Caribbeans, N-<br>Panama, <u>Muertos</u> , <u>Nicaragua Rise</u> ,<br><u>Beata Ridge</u>                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                          |                                                                                                       |                                                | Cascadia                                                                                                                                                  |                                                                                                                 |                                                                            |  |  |
| Far from OCT | Transform fault / Fracture zone<br>(including oceanic STEP fault) | C- & W-Aleutians, <u>Bowers Ridge</u> , <u>Gagua</u> -<br><u>E-Luzon Trough</u> , Yap, Mussau, Samoa-<br>Gilbert-Ralik, Matthew & Hunter,<br><u>Carpathians</u>                                                                                                                                                                                                  | Gagua - E-Luzon Trough, Izu-Bonin-Mariana, Yap, Palau, Lyra, Mussau, Samoa-Gilbert-Ralik, Matthew & Hunter, d'Entrecasteaux, Tonga-Kermadec, Puysegur, McDougall, Macquarie, Hjort, Saint Paul, Romanche, Barracuda, Tiburon, S-Sandwich | Samoa-Gilbert-Ralik, Tonga-<br>Kermadec, S-Sandwich                                                   | Tonga-Kermadec                                 | Izu-Bonin-Mariana,<br>Yap, <u>Palau</u> , <u>Lyra</u> ,<br><u>Musseau</u> , <u>Matthew &amp;</u><br><u>Hunter</u> , Tonga-<br>Kermadec, <u>Saint Paul</u> | Tonga-Kermadec, S-<br>Sandwich                                                                                  | lzu-Bonin-Mariana                                                          |  |  |
| Farf         | Spreading center                                                  | C- & W-Aleutians, <u>Bowers Ridge</u> , Yap,<br>Cascadia                                                                                                                                                                                                                                                                                                         | NW-Borneo - Cagavan, Yap, Loyalty -<br>Three Kings, Puysegur, McDougall,<br>Macquarie, Hjort, Endurance Collision<br>Zone                                                                                                                |                                                                                                       |                                                | Yap, Cascadia                                                                                                                                             | NW-Borneo - Cagayan,<br>Endurance Collision Zone                                                                |                                                                            |  |  |
|              | Oceanic normal fault (including detachment fault)                 | C-Indian Ocean, <u>Beata Ridge</u> , <u>W-Mediterranean</u>                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                          |                                                                                                       |                                                |                                                                                                                                                           |                                                                                                                 |                                                                            |  |  |


Classification of areas where subduction initiated during the Cenozoic. Lines indicate the geodynamic setting at the time of subduction initiation. STEP = Subduction-Transform Edge Propagator; OCT = Ocean-**Continent Transition. Columns list** the subduction triggers at initiation sorted in two groups depending on whether the driving forces are lithospheric or originate from the mantle. SC = Spreading Center. Note that some SZs satisfy several settings or triggers either because there were multiple settings or triggers acting simultaneously or because initial settings or triggers are debated. Colors indicate the subduction initiation stage reached by the system (see legend at the bottom of the table). If SI stops before reaching stage 4 = self-sustained, we consider that the process aborts, the name of the SZ is then underlined. If SI stops after stage 4, we consider that the subduction is extinct; the name of the SZ is then double-underlined.

|                                        |                               | Deformation spatial expression                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                         |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |                                                                                                                |                                                                                                                                                                                                            |
|----------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        |                               | Flip (polarity reversal)                                                                                                                                                                                                                                                                                                                                                                                                           | Jump (same polarity)                                                                                     | Lateral propagation                                                                                                                                                                                                                                                                                                                                         | Tectonic uplift                                                                                                                                         | SC conversion                                                                                                                  | TF conversion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NF/DF conversion                                                                                                           | Buckling                                                                                                       | SZ reactivation                                                                                                                                                                                            |
| Deformation mode<br>fault reactivation | Change in fault<br>kinematics | C- & W-Aleutians, Bowers Ridge, Proto-Kamtchatka, Kuril, E-Japan Sea, Philippines, NW-Borneo - Cagayan, Flores, Wetar, N- Sulawesi, Tolo, N- Melanesian, Vitiaz, Pocklington, Samoa- Gilbert-Ralik, New Britain- San Cristobal (incl. S- Solomon), New Hebrides, Ambrym (incl. Pentecost- Maeowo), Loyalty - Three Kings, Tonga-Kermadec, N- Panama, Muertos, Nicaragua Rise, W- Mediterranean, N- Maghrebides (Alboran to Sicily) |                                                                                                          | S-Ryukyus, Manila, Negros, Cotobato, Philippines, Sula, Sulu, Sangihe, New Britain-San Cristobal (incl. S- Solomon), Vitiaz, Matthew & Hunter, d'Entrecasteaux, Puysegur, Hjort, Banda (incl. Seram), S- Caribbeans, N-Panama, Puerto-Rico, Endurance Collision Zone, S- Sandwich, W- Mediterranean, Gibraltar, Calabria, N-Maghrebides (Alboran to Sicily) | Zenisu, Gagua - E-Luzon Trough, McDougall, Macquarie, Hjort, Muertos, Beata Ridge, Saint Paul, Romanche, SW Iberia (Incl. Gorringe), Barracuda, Tiburon | C- & W-Aleutians, Bowers Ridge, NW-Borneo - Cagayan, Yap, d'Entrecasteaux, Loyalty - Three Kings, Puysegur, Hjort, Beata Ridge | E-Japan Sea, Gagua - E- Luzon Trough, Manila, Negros, Cotobato, NW- Borneo - Cagavan, Sangihe, Halmahera, Izu- Bonin-Mariana, Yap, Palau, Lyra, Mussau, Samoa-Gilbert-Ralik, Matthew & Hunter, Tonga-Kermadec, Puysegur, McDougall, Macquarie, Hjort, Sunda, Banda (incl. Seram), Puerto-Rico, Saint Paul, Romanche, SW Iberia (Incl. Gorringe), Barracuda, Tiburon, Carpathians, W- Mediterranean, Gibraltar, Calabria, N-Maghrebides (Alboran to Sicily)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E-Japan Sea, Mussau, C-<br>Indian Ocean, <u>Beata</u><br>Ridge, <u>N-Iberia</u> , N-<br>Maghrebides (Alboran to<br>Sicily) | Zenisu, Samoa-Gilbert-<br>Ralik, Ambrym (incl.<br>Pentecost-Maeowo), C-<br>Indian Ocean, Barracuda,<br>Tiburon |                                                                                                                                                                                                            |
|                                        | Same fault<br>kinematics      | N-Melanesian, <u>Vitiaz</u> ,<br><u>Pocklington</u> , New Britain-<br>San Cristobal (incl. S-<br>Solomon), New Hebrides,<br>Ambrym (incl. Pentecost-<br>Maeowo)                                                                                                                                                                                                                                                                    | Komandorsky,<br>Kamtchatka, <u>Trobriand</u> ,<br>Sunda                                                  | New Britain-San Cristobal<br>(incl. S-Solomon), <u>Vitiaz</u>                                                                                                                                                                                                                                                                                               | and desired the second                                                                                                                                  |                                                                                                                                | Transition of the state of the |                                                                                                                            | Ambrym (incl. Pentecost-<br>Maeowo)                                                                            | Komandorsky, Kamtchatka, Ryukyus- Nankai, Halmahera, N- Melanesian, <u>Vitiaz</u> , <u>Pocklington</u> , New Britain San Cristobal (incl. S- Solomon), New Hebrides Ambrym (incl. Pentecost Maeowo), Sunda |
| Fault(s) neoformation                  |                               | C- & W-Aleutians, <u>Bowers</u> <u>Ridge</u> , Taiwan E-coast, <u>Philippines</u> , Tolo, <u>Samoa-Gilbert-Ralik</u> , N-Solomon, <u>Ambrym</u> (incl. Pentecost-Maeowo), Tonga- Kermadec, N-Panama, <u>Muertos</u> , <u>Nicaragua Rise</u> ,                                                                                                                                                                                      | Zenisu, Cascadia, N-Solomon, <u>Trobriand</u> ,<br>Sunda, <u>Nicaragua Rise</u> , <u>W-Mediterranean</u> | Taiwan E-coast, Cotobato,<br>Philippines, Sula, Sangihe,<br>Matthew & Hunter, N-                                                                                                                                                                                                                                                                            | Zenisu, <u>Muertos</u>                                                                                                                                  | C- & W-Aleutians, Bowers<br>Ridge                                                                                              | Cotobato, Sangihe, Halmahera, Mussau, Samoa-Gilbert-Ralik, Matthew & Hunter, Tonga-Kermadec, Sunda, Puerto-Rico, W- Mediterranean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mussau                                                                                                                     | Zenisu, Taiwan E-coast,<br>Samoa-Gilbert-Rallk,<br>Ambrym (incl. Pentecost-<br>Maeowo)                         | Halmahera, Ambrym<br>(incl. Pentecost-<br>Maeowo), Tonga-<br>Kermadec, Sunda                                                                                                                               |

Deformation style at subduction initiation. Lines indicate the deformation mode at the time of subduction initiation. Columns list the spatial expression of the deformation at initiation. SC = Spreading Center; TF = Transform Fault; NF/DF = Normal Fault or Detachment Fault; SZ = Subduction Zone. Note that some SZs satisfy several settings or triggers either because there were multiple settings or triggers acting simultaneously or because initial settings or triggers are debated. Colors and underlining codes are the same as in previous Table.

Below is an example of data processing (respective age and nature of subducting and overriding plates at the time of subduction initiation).

The manuscript, submitted next month at Earth-Science Reviews, will provide details for each subduction initiation occurrence as well as an analysis of various characteristics (see slide 1) and some conclusions related to the physics of the processes.



Distribution of ages of subducting plates in Ma and in descending order. When the oceanic crust is thicker than normal, the label P or R means plateau or ridge. A majority of overriding plates have an arc or a continental composition. For those having a typical oceanic composition, their age appears with yellow dots. O, Y and = mean that the overriding plate is respectively older, younger or has a similar age than the subducting plate. The length of the yellow dotted lines increases with the age contrast between the overriding and the subducting oceanic plates.