

Department of Hydrosciences, Institute of Hydrology and Meteorology, Chair of Hydrology TU Dresden, Germany

How good does Automatic Model Structure Identification work? A Benchmark Study with 6912 Model Structures.

Diana Spieler and Niels Schütze

diana.spieler@tu-dresden.de

Introduction

I previously developed a tool for <u>Automatic Model</u> <u>Structure Identification (AMSI) allowing to calibrate</u> conceptual model structures simultaneously with model parameters.

I tested it on 12 hydro-climatically differing MOPEX catchments (Duan, 2006) and the identified model structures worked well.

- Conceptual model structures can be optimized simultaneously with model parameters
- The identified model structures can reproduce the rainfall runoff behavior of humid catchments
- Standard optimization algorithms are not ideal for structure identification as set of parameters to calibrate depends on model structure

BUT – we don't know how well AMSI really works.

Potential problems with AMSI:

- AMSI is computationally challenging as different model structures may use a different number of parameters.
- Some parameters may be shared between model structures, others might be relevant for only a few structures.
- Shared model parameters might cause different effects in different model structures, causing their optimal values to differ across structures.

Research Questions

- How do two "of the shelf" mixed-integer optimization algorithms perform, when having to handle these peculiarities during AMSI?
- Do we find the "best"* available model structure(s) out of a given model space?

* "best" will be defined in KGE performance henceforth, even though the definition of (a) "best" model structure(s) is a question in itself

Experimental Design

We employ two "of the shelf" mixed-integer optimization algorithms with AMSI.

And pick 3 catchments from the 12 previously used MOPEX catchments

How good does Automatic Model Structure Identification work? A Benchmark Study with 6912 Model Structures. Department for Hydrosciences, TU Dresden // diana.spieler@tu-dresden.de EGU 2021// 28.04.2021

Slide 4

Experimental Design

We created a maximum model space which allows for 13824 structure combinations

- The model space allows 1 or 2 soil storages
- 9 processes can be in- or excluded from the model structure
- 3 of 9 processes also have several process options
- A rain-snow routine is fixed
- Model structures have between 3 and 12 parameters depending on the included processes/process options

How good does Automatic Model Structure Identification work? A Benchmark Study with 6912 Model Structures. Department for Hydrosciences, TU Dresden // diana.spieler@tu-dresden.de EGU 2021// 28.04.2021

Slide 5

Experimental Design

We compare the "Brute Force Calibration" of 6912 Model Structures with the AMSI approach

But why 6912 instead of 13824??

- Some possible combinations within the chosen model space might not make much sense
 - E.g., 960 times the lower soil storage may be active but doesn't allow any outflow
- Similarly, percolation into the lower soil storage is turned off 6912 times (making all combinations connected to the 2nd soil storage practically useless)
 - → these combinations are excluded for the brute force calibration but remain possible during the AMSI calibration

We compare the "Brute Force Calibration" of 6912 Model Structures with the AMSI approach

- 1 standard parameter calibrations for 6912 models
- Performed for 3 catchments
- Calibration: CMAES, KGE, 1975-2000
- Max. budget of 25.000 iterations
- Validation: 1950-1975
- 3 to 12 parameters depending on model structure
- \rightarrow Results are Benchmark for AMSI runs

- 100 AMSI runs (multiple starts)
- Performed for 3 catchments
- Calibration: CMAES+DDS, KGE, 1975-2000
- Max. budget of 25.000 iterations
- Validation: 1950-1975
- 3 to 12 parameters depending on model structure
 - **BUT** 29 parameters are constantly calibrated for AMSI (9 integer parameters for structural choices + 20 continuous parameters for potentially necessary process parameters)

Calibration and Validation Results for AMSI approaches and "Brute Force Calibration"

Structural Choices of the 10 "Best" Model Structures in Calibration

Guadalupe Catchment

AMSI - DDS

10 "best" model structures identified with AMSI-DDS

AMSI - CMAES

10 "best" model structures identified with AMSI-CMAES

Do the same models perform well in Validation?

Guadalupe Catchment

 During calibration it seems the process description for the baseflow of the lower soil storage (BF2) can be chosen arbitrarily and there is a clear favorite for the flow out of the upper soil storage (BF1) and Infiltration (Inf)

10 "best" out of 6912 model structures 5 2 1 1 5 1 1 3 1 1 5 2 1 1 1 4 1 1 1 1 2 5 5 1 1 1 1 6 1 1 1 1 3 7 1 1 1 1 3 1 5 8 1 1 1 1 5 9 3 2 1 1 1 1 5 5 10 2 1 1 1 CEvpR CEvpS SEvp Conv CRise Ъf Perc BF2 ШЦ Ш

"Brute Force"

Validation

 Validation shows that models using a GR4J-like baseflow approach* in the lower soil storage and no Threshold based approach* in the upper soil layer tend to perform better.

* Please refer to the RAVEN documentation for more information on the different process algorithms \rightarrow RAVEN

How good does Automatic Model Structure Identification work? A Benchmark Study with 6912 Model Structures. Department for Hydrosciences, TU Dresden // diana.spieler@tu-dresden.de EGU 2021// 28.04.2021

Integer

BF2 Process

HMETS Inf Process THRESH BF1 Process

VIC

TOPM

On/Off Process

Results

What about the results for the other 2 catchments?

Tygart Valley Catchment (preliminary)

I made a stupid mistake and then the supercomputer and I hit a rough patch in our relationship

- Unfortunately, not all results were available as planned.
- Thus, no reliable conclusion about the performance of AMSI can be drawn just yet.

*1230/6912 structures evaluated

What do we know (so far)

- Be very careful when handling files that are the foundation of your currently running ~20.000 calibration jobs.
- Use open-source software license problems are a pain.
- Okay, okay but what about the research questions?
 - How do two "of the shelf" mixed-integer optimization algorithms perform, when having to handle these peculiarities during AMSI?
 - Better than (I) expected.
 - However, CMAES has a variance-based optimization strategy which does not seem to be quite as suitable for structural calibration
 - Do we find the "best"* available model structure(s) out of a given model space?
 - We get very close in finding the same structures that perform well in calibration; at least for DDS it seems to be a matter of parameter fine tuning
 - However, this does not necessarily imply those same structures work well in validation.

In order to pursue AMSI a lot of thought needs to be put into the calibration setup (objective function, optimization algorithm, multi-criteria calibration, several datasets, etc.)

* "best" will be defined in KGE performance henceforth, even though the definition of (a) "best" model structure(s) is a question in itself

Thank you for your interest in my work!

Feel free to reach out in case of any questions or remarks!

diana.spieler@tu-dresden.de

