Mechanism of hyperaccumulation of heavy metals by Verbascum thapsus from soil (EGU21-12848)

EGU by Natalia Chernikova¹, Victor Chaplygin¹, Dina Nevidomskaya¹, Karen Ghazaryan², Saglara Mandzhieva¹, Tatiana Minkina¹, Hasmik Movsesyan², Alexey Glinushkin³, Valery Kalinichenko^{3,4}, Vladimir Beschetnikov¹, and Ilia Sazonov¹

¹Southern Federal University, Rostov-on-Don, Russia (nat.tchernikova2013@yandex.ru) ²Yerevan State University, Yerevan, Republic of Armenia (kghazaryan@ysu.am)

³All-Russian Research Institute for Phytopathology of the Russian Academy of Sciences, Big Vyazemy, Moscow Region, Russia (glinale@mail.ru)

⁴Institute of Fertility of Soils of South Russia, Persianovka, Rostov Region, Russia (kalinitch@mail.ru)

INTRODUCTION

Verbascum thapsus L. (genus Verbascum, family Scrophulariaceae) rise the particular interest for the analysis of the effect of technogenic pollution with heavy metals (HM), since these are able to grow even in extreme technogenically polluted areas. This species is a widespread in studied anthropogenically transformed territory lake Atamanskoe. This lake has been used for 40 years as a reservoir for the discharge of industrial waste water from chemical production. The aim of the study is

METHODS

The ecological conditions of the soils were assessed by the value of the total content of HM (X-ray fluorescence analysis) and their mobile compounds (extraction with ammonium acetate buffer using atomic absorption spectroscopy) in soils.

HM were extracted from plant ash by dissolution in 20% HCl solution followed by AAS analysis. Anatomical and morphological features in the tissues of the plants affected by HM were analyzed using light-optical and electron-microscopic methods.

RESULTS

The soil pollution degree is characterized as very high for Zn, high for Pb, and moderate for Cu, Ni, Cr and Mn. The average concentrations of mobile forms of HMs can be represented as a decreasing row: Zn > Mn > Cr > Pb > Ni > Cu > Cd.

		Cu	Zn	Pb	Cd	Ni				
Total content										
1970±207	134±16	409±36	65243±6010	128±11	5±0.3	165±16				
1000	83	47	83	16	-	58				
1500	90	55	100	32	0.5	85				
Weakly bond forms										
129.3±15.2	9.1±1.0	0.8±0.1	9858±1135	7.5±0.9	0.01±0.001	7.1±0.7				
700	6	3	23	6	0.05	4				
Exceedances of the Clarkes in soils (Vinogradov, 1957), MPC										
	1970±207 1000 1500 129.3±15.2 700 nces of the m 1990)	1970±207 134±16 1000 83 1500 90 129.3±15.2 9.1±1.0 700 6 nces of the Clarkes i m 1990) are type	Tot 1970±207 134±16 409±36 1000 83 47 1500 90 55 Weakt 129.3±15.2 9.1±1.0 0.8±0.1 700 6 3 nces of the Clarkes in soils (Vi m. 1990) are tyred in bold	Total content 1970±207 134±16 409±36 65243±6010 1000 83 47 83 1500 90 55 100 Weakly bond forms 129.3±15.2 9.1±1.0 0.8±0.1 9858±1135 700 6 3 23 nces of the Clarkes in soils (Vinogradov, 19	Total content 1970±207 134±16 409±36 65243±6010 128±11 1000 83 47 83 16 1500 90 55 100 32 Weakly bond forms 129.3±15.2 9.1±1.0 0.8±0.1 9858±1135 7.5±0.9 700 6 3 23 6 nces of the Clarkes in soils (Vinogradov, 1957), MPC 1990) are twoed in hold 1990)	Total content 1970±207 134±16 409±36 65243±6010 128±11 5±0.3 1000 83 47 83 16 - 1500 90 55 100 32 0.5 Weakly bond forms 129.3±15.2 9.1±1.0 0.8±0.1 9858±1135 7.5±0.9 0.01±0.001 700 6 3 23 6 0.05 Inces of the Clarkes in soils (Vinogradov, 1957), MPC Importance typed in bold 1990) are typed in bold 0.01				

HM are ranked in the following order in terms of the absolute content in plants: Zn > Cr > Pb > Cu > Mn > Ni > Cd. There is a dependence of the content of metals in plants on the level of technogenic burden on soil by the gross content in general and the level of mobile (exchangeable) forms of metals.

The light-optical observations of *V. thapsus* showed that the accumulation of HM in organs caused degradation of the epidermis and insignificant increase of the root diameter. However, no significant changes in the ultrastructure of cell membranes and major cytoplasmic organelles have been found.

Part of the plant	Mn	Cr	Cu	Zn	Pb	Cd	Ni			
Generative organs	1.5±0.1	3.7±0.4	5.2±0.3	343.5±29.8	3.9±0.4	0.4±0.02	2.0±0.3			
Stems and leaves	2.5±0.2	12.0±1.3	3.8±0.3	791.2±72.3	6.1±5.5	0.6±0.08	1.6±0.3			
Roots	0.9±0.1	7.5±0.6	4.3±0.1	1996.0±205.4	4.0±0.4	0.9±0.01	1.7±0.2			
MPL	-	0.5	30	50	5	0.3	3			
Exceedance of MPL for grasses is typed in bold (Provisional 1987)										

The lower level of HM content in the inflorescences of mullein plants in comparison with the root system, stems and leaves indicates the resistance of generative organs to technogenic pollution.

The decrease of the size of starch grains and number of plastoglobules in chloroplasts of V. thapsus leaves occurs, probably due to changes of the membrane structure of plastids.

Conclusion

Thus, it can be assumed that the disruption of the lamellar system and the internal order of chloroplasts, changes in the structure of plastoglobules and starch grains is a protective mechanism against damage to the photosynthetic apparatus under conditions of HM pollution.

