


➢ ENSO : constrains the frequency of heavy rainfall at the seasonal timescale

▲ Frequency of the upper quintile of weekly precipitation depending on ENSO 
phase (MSWEP data, DJF 1996-2014).
In white : no significant difference with the 0.2 baseline frequency based on a 95% 
Student test.

Predictability sources in the southwest tropical Pacific



➢ MJO : constrains the frequency of heavy rainfall at a few weeks timescale

▲ Frequency of the upper quintile of weekly precipitation depending on MJO 
phase (MSWEP data, DJF 1996-2014).
In white : no significant difference with the 0.2 baseline frequency based on a 95% 
Student test.

Predictability sources in the southwest tropical Pacific



▲ Frequency of the upper quintile of weekly precipitation in La Niña and El Niño 
phases in observations (MSWEP) and S2S week-3 forecasts. 
DJF 1996-2013 period.
In white : no significant difference with the 0.2 baseline frequency based on a 95% 
Student test.

How are the impacts of ENSO represented in the models’ world ?



▲ Frequency of the upper quintile of weekly precipitation in MJO phases 8-1 and 4-5 in 
observations (MSWEP) and S2S week-3 forecasts.
DJF 1996-2013 period.
In white : no significant difference with the 0.2 baseline frequency based on a 95% 
Student test.

How are the impacts of the MJO represented in the models’ world ?



Statistical-dynamical prediction : framework
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Statistical-dynamical prediction : framework
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Objectives :
➢ Taking advantage of the models’ information about large-scale predictors
➢ Producing better calibrated probabilistic precipitation forecasts
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Statistical-dynamical prediction : methodology
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➢ Notations
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➢  Use of Bayes’ formula
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Statistical-dynamical prediction : methodology

Bayesian method adapted from Coelho et al. (2004) and Luo et al. (2007)
(1) A priori distribution  : observed and forecast weekly precipitations are normalized with a 
quantile-quantile method  (mean μ = 0 ; standard deviation σ = 1)
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Statistical-dynamical prediction : methodology

◄ Normalization of precipitation data, 
taken from  Luo et al. (2007).

Bayesian method adapted from Coelho et al. (2004) and Luo et al. (2007)
(1) A priori distribution  : observed and forecast weekly precipitations are normalized with a 
quantile-quantile method  (mean μ = 0 ; standard deviation σ = 1)



Statistical-dynamical prediction : methodology
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(2) Likelihood : the relationships expressing the prédictors as a function of the predictand are 
learnt by linear regressions
→ The predictors follow normal distributions depending on the predictand
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Bayesian method adapted from Coelho et al. (2004) and Luo et al. (2007)
(2) Likelihood : the relationships expressing the prédictors as a function of the predictand are 
learnt by linear regressions
→ The predictors follow normal distributions depending on the predictand
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Bayesian method adapted from Coelho et al. (2004) and Luo et al. (2007)
(2) Likelihood : the relationships expressing the prédictors as a function of the predictand are 
learnt by linear regressions
→ The predictors follow normal distributions depending on the predictand
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Bayesian method adapted from Coelho et al. (2004) and Luo et al. (2007)
(2) Likelihood : the relationships expressing the prédictors as a function of the predictand are 
learnt by linear regressions
→ The predictors follow normal distributions depending on the predictand
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Statistical-dynamical prediction : methodology

Bayesian method adapted from Coelho et al. (2004) and Luo et al. (2007)
(3) The statistical-dynamical prediction (i.e a posteriori distribution) is also a normal distribution
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How to use the statistical-dynamical prediction ?

➢ Probabilistic forecasting of the upper quintile of weekly precipitation

Upper quintile of the a priori 
climatological distribution : ~ 0.84



How to use the statistical-dynamical prediction ?

➢ Probabilistic forecasting of the upper quintile of weekly precipitation

A posteriori probability of exceedance 
of the upper quintile threshold

Upper quintile of the a priori 
climatological distribution : ~ 0.84



Benefits of the statistical-dynamical prediction

➢ Improvement of discrimination depending on the location (ROC skill score at grid point level)

▲ Left: ROC skill score of week-3 S2S prediction of the upper quintile of weekly 
precipitation (3 x 3 grid points pooling).
Right: Différence between ROC skill score before and after implementation of 
the statistical-dynamical approach (calibration + bridging).
Reférence : MSWEP, DJF 1996-2014 period.



Benefits of the statistical-dynamical prediction

➢ Improvement of discrimination (ROC skill score over the whole domain)

◄ Evolution of the ROC skill score of 
Météo-France and ECMWF S2S forecasts 
before the stat-dyn approach (black), after 
calibration (blue), after bridging (orange), 
after calibration + bridging (red).

Reference : MSWEP, DJF 1996-2013 
period



Benefits of the statistical-dynamical prediction

➢ What if we were able to forecast ENSO and MJO perfectly ? Calibration + bridging from ERA-
Interim

◄ Evolution of the ROC skill score of 
Météo-France and ECMWF S2S forecasts 
before the stat-dyn approach (black), after 
calibration (blue), after bridging (orange), 
after calibration + bridging (red), after 
bridging from ERA-Interim (dashed 
orange), after calibration + bridging from 
ERA-Interim (dashed red).
Reference : MSWEP, DJF 1996-2013 
period



Benefits of the statistical-dynamical prediction 

▲ Frequency of the upper quintile of weekly precipitation in La Niña and El Niño 
phases in observations (MSWEP) and Météo-France S2S week-3 forecasts before 
(middle) and after (right) implementation of the statistical-dynamical approach.
DJF 1996-2013 period.
In white : no significant difference with the 0.2 baseline frequency based on a 95% 
Student test.

➢ Improvement of the representation of ENSO impacts



Benefits of the statistical-dynamical prediction

➢ Improvement of the representation of MJO impacts

▲ Frequency of the upper quintile of weekly precipitation in MJO phases 4-5 and 6-7 in 
observations (MSWEP) and Météo-France S2S week-3 forecasts before (middle) and 
after (right) implementation of the statistical-dynamical approach.
DJF 1996-2013 period.
In white : no significant difference with the 0.2 baseline frequency based on a 95% 
Student test.



What is the importance of each predictor ?

➢ Relative contribution of each large-scale predictor if forecast perfectly (i.e from ERA-Interim) 

◄ Order of selection for each predictor in a 
stepwise forward selection scheme when 
considering only large-scale predictors from 
reference data (ERA-Interim).
In white : the predictor does not bring any additional 
information.



What is the importance of each predictor ?

➢ Relative contribution of each predictor in the calibration + bridging statistical-dynamical approach

▲ Order of selection for each predictor in a stepwise forward selection scheme, 
applied at each lead time for the calibration + bridging scheme applied to the 
Météo-France system. Forecast rainfall is also included in the selection.
In white : the predictor does not bring any additional information.



➢ Separate fits on each predictor enable to custom the predictor set without a whole re-fitting

➢ Improved probabilistic forecasts (discrimination, reliability), with crucial role of calibration and 
additional rôle of briding

➢ Better representation of the impacts of ENSO and the MJO

➢ Bridging predictors become increasingly important with lead time at locations where provide 
information

 SUMMARY
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