

A statistical-dynamical approach to improve subseasonal precipitation forecasts: application to the southwest tropical Pacific

Damien Specq and Lauriane Batté

Centre National de Recherches Météorologiques, Université de Toulouse, Météo-France, CNRS, Toulouse, France (damien.specq@meteo.fr)

Predictability sources in the southwest tropical Pacific

> ENSO : constrains the frequency of heavy rainfall at the seasonal timescale

▲ Frequency of the upper quintile of weekly precipitation depending on ENSO phase (MSWEP data, DJF 1996-2014). In white : no significant difference with the 0.2 baseline frequency based on a 95% Student test.

Predictability sources in the southwest tropical Pacific

> MJO : constrains the frequency of heavy rainfall at a few weeks timescale

▲ Frequency of the upper quintile of weekly precipitation depending on MJO phase (MSWEP data, DJF 1996-2014). In white : no significant difference with the 0.2 baseline frequency based on a 95% Student test.

How are the impacts of ENSO represented in the models' world ?

▲ Frequency of the upper quintile of weekly precipitation in La Niña and El Niño phases in observations (MSWEP) and S2S week-3 forecasts. DJF 1996-2013 period. In white : no significant difference with the 0.2 baseline frequency based on a 95% Student test.

How are the impacts of the MJO represented in the models' world ?

▲ Frequency of the upper quintile of weekly precipitation in MJO phases 8-1 and 4-5 in observations (MSWEP) and S2S week-3 forecasts. DJF 1996-2013 period.

In white : no significant difference with the 0.2 baseline frequency based on a 95% Student test.

Objectives :

- Taking advantage of the models' information about large-scale predictors
- Producing better calibrated probabilistic precipitation forecasts

Notations

Bayesian method adapted from Coelho et al. (2004) and Luo et al. (2007) > What we are looking for : *a posteriori* observed precipitation distribution (R_o) knowing the forecast predictors $\mathbf{x}_f = (R_f, N34_f, RMM1_f, RMM2_f)$

Use of Bayes' formula

Bayesian method adapted from Coelho et al. (2004) and Luo et al. (2007) (1) *A priori* distribution : observed and forecast **weekly precipitations are normalized** with a quantile-quantile method (mean $\mu = 0$; standard deviation $\sigma = 1$)

Bayesian method adapted from Coelho et al. (2004) and Luo et al. (2007) (1) *A priori* distribution : observed and forecast **weekly precipitations are normalized** with a quantile-quantile method (mean $\mu = 0$; standard deviation $\sigma = 1$)

Bayesian method adapted from Coelho et al. (2004) and Luo et al. (2007)

(2) Likelihood : the relationships expressing the **prédictors as a function of the predictand** are learnt by linear regressions

 \rightarrow The predictors follow normal distributions depending on the predictand

Bayesian method adapted from Coelho et al. (2004) and Luo et al. (2007)

(2) Likelihood : the relationships expressing the **prédictors as a function of the predictand** are learnt by linear regressions

 \rightarrow The predictors follow normal distributions depending on the predictand

Example : RMM1_o follows a normal distribution > mean $\mu = a_{o,RMM1} + b_{o,RMM1}\hat{R}_{o}$ > variance $\sigma^{2}_{o,RMM1}$ RMM1_o

Bayesian method adapted from Coelho et al. (2004) and Luo et al. (2007)

(2) Likelihood : the relationships expressing the **prédictors as a function of the predictand** are learnt by linear regressions

 \rightarrow The predictors follow normal distributions depending on the predictand

Example : RMM1_f follows a normal distribution > mean $\mu = a_{f,RMM1} + b_{f,RMM1}RMM1_{o}$ > variance $\sigma^{2}_{f,RMM1}$

Bayesian method adapted from Coelho et al. (2004) and Luo et al. (2007)

(2) Likelihood : the relationships expressing the **prédictors as a function of the predictand** are learnt by linear regressions

 \rightarrow The predictors follow normal distributions depending on the predictand

Bayesian method adapted from Coelho et al. (2004) and Luo et al. (2007) (3) The statistical-dynamical prediction (i.e *a posteriori* distribution) is also a **normal distribution**

How to use the statistical-dynamical prediction ?

Probabilistic forecasting of the upper quintile of weekly precipitation

How to use the statistical-dynamical prediction ?

Probabilistic forecasting of the upper quintile of weekly precipitation

> Improvement of discrimination depending on the location (ROC skill score at grid point level)

▲ Left: ROC skill score of week-3 S2S prediction of the upper quintile of weekly precipitation (3 x 3 grid points pooling). Right: Différence between ROC skill score before and after implementation of the statistical-dynamical approach (calibration + bridging). Reférence : MSWEP, DJF 1996-2014 period.

Improvement of discrimination (ROC skill score over the whole domain)

✓ Evolution of the ROC skill score of Météo-France and ECMWF S2S forecasts before the stat-dyn approach (black), after calibration (blue), after bridging (orange), after calibration + bridging (red).

Reference : MSWEP, DJF 1996-2013 period

What if we were able to forecast ENSO and MJO perfectly ? Calibration + *bridging* from ERA-Interim

 Evolution of the ROC skill score of Météo-France and ECMWF S2S forecasts before the stat-dyn approach (black), after calibration (blue), after bridging (orange), after calibration + bridging (red) atter bridging ERA-Interim from (dashed orange), after calibration + bridging from ERA-Interim (dashed red) Reference : MSWEP. DJF 1996-2013 period

Improvement of the representation of ENSO impacts

▲ Frequency of the upper quintile of weekly precipitation in La Niña and El Niño phases in observations (MSWEP) and Météo-France S2S week-3 forecasts before (middle) and after (right) implementation of the statistical-dynamical approach. DJF 1996-2013 period. In white : no significant difference with the 0.2 baseline frequency based on a 95% Student test.

Improvement of the representation of MJO impacts

▲ Frequency of the upper quintile of weekly precipitation in MJO phases 4-5 and 6-7 in observations (MSWEP) and Météo-France S2S week-3 forecasts before (middle) and after (right) implementation of the statistical-dynamical approach. DJF 1996-2013 period.

In white : no significant difference with the 0.2 baseline frequency based on a 95% Student test.

What is the importance of each predictor ?

Relative contribution of each large-scale predictor if forecast perfectly (i.e from ERA-Interim)

◀ Order of selection for each predictor in a stepwise forward selection scheme when considering only large-scale predictors from reference data (ERA-Interim). In white : the predictor does not bring any additional information.

What is the importance of each predictor ?

Relative contribution of each predictor in the calibration + bridging statistical-dynamical approach

▲ Order of selection for each predictor in a stepwise forward selection scheme, applied at each lead time for the calibration + bridging scheme applied to the Météo-France system. Forecast rainfall is also included in the selection. In white : the predictor does not bring any additional information.

SUMMARY

- Separate fits on each predictor enable to custom the predictor set without a whole re-fitting
- Improved probabilistic forecasts (discrimination, reliability), with crucial role of calibration and additional rôle of briding
- Better representation of the impacts of ENSO and the MJO
- Bridging predictors become increasingly important with lead time at locations where provide information

Climate Dynamics (2020) 55:1913–1927 https://doi.org/10.1007/s00382-020-05355-7

Improving subseasonal precipitation forecasts through a statistical-dynamical approach : application to the southwest tropical Pacific

Damien Specq¹ · Lauriane Batté¹

Received: 19 December 2019 / Accepted: 3 July 2020 / Published online: 22 July 2020 $\ensuremath{\mathbb{C}}$ Springer-Verlag GmbH Germany, part of Springer Nature 2020