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Predictability sources in the southwest tropical Pacific

» ENSO : constrains the frequency of heavy rainfall at the seasonal timescale

La Nifia : OBS

120 140 160 180

A Frequency of the upper umtlle of weekly precipitation depending on ENSO
hase% VVEP data, DE)JFI): 19% Y precip P J

whlte no significant dlfference W|th the 0.2 baseline frequency based on a 95%
Student test.
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Predictability sources in the southwest tropical Pacific

» MJO : constrains the frequency of heavy rainfall at a few weeks timescale

MJO phases 8-1:0BS MJO phases 2-3 : OBS

A Frequency of the uplger qumtlle of weekly precipitation depending on MJO
Fhase( SWEP data, DJF 1996-20

white : no significant difference W|th the 0.2 baseline frequency based on a 95%
Student test.



How are the impacts of ENSO represented in the models’ world ?

La Nifa : OBS La Nifa : MF semaine 3 La Nifia : ECMWF semaine 3

A Frequency of the u clq:_

hases in observations SW P) and S2S weék-3 forecasts.

JF 1996-2013 period.
In white : no S|gn|f|cant difference with the 0.2 baseline frequency based on a 95%
Student test.

uintile of weekly precipitation in La Nifa and EI Nifo



How are the impacts of the MJO represented in the models’ world ?

MJO phases 8-1 : MF semaine 3

MJO phases 8-1 : ECMWF semaine 3

o TEmmE

120 140 160 180 30 %0 140 160 180 8307920 140 160 180
0BS

o

A Frequency of the upper quintile of weekly precipitation in MJO phases 8-1 and 4-5 in
observations {MSVV_E ) and S2S week-3 forecasts.
DJF 1996-2013 period.

In white : no significant difference with the 0.2 baseline frequency based on a 95%
Student test.
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Statistical-dynamical prediction : framework
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Statistical-dynamical prediction : framework
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Statistical-dynamical prediction : framework

Calibration

1
Forecast « -

precipitation

Observed
precipitation

Stat-dyn
forecast
precip

Learning from reforecasts




J

Statistical-dynamical prediction : framework

Objectives :

» Taking advantage of the models’ information about large-scale predictors
» Producing better calibrated probabilistic precipitation forecasts

Calibration
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Statistical-dynamical prediction : methodology

> Notations
Calibration : R, i - R,
| N34, [&——» N34
Bridging E E

| RMM1, g 5! RMM1

[ RMM2, | RMM2,

—— "3 : Stat-dyn
| forecast

- precip

<> Learning from reforecasts -<€—P> | Climatological relationship
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Statistical-dynamical prediction : methodology

Bayesian method adapted from Coelho et al. (2004) and Luo et al. (2007)
» What we are looking for : a posteriori observed precipitation distribution (R ) knowing the

forecast predictors x, = (R, N34, RMM1,, RMM2)
» Use of Bayes’ formula

<—{ (R [x.) ~ p(x. [R).p(R)

Likelihood = distribution of x. A priori distribution
predictor knowing R_predictand of predictand R
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Statistical-dynamical prediction : methodology

Bayesian method adapted from Coelho et al. (2004) and Luo et al. (2007)
(1) A priori distribution : observed and forecast weekly precipitations are normalized with a
quantile-quantile method (mean y = 0 ; standard deviation o = 1)

pu
pu
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Statistical-dynamical prediction : methodology

Bayesian method adapted from Coelho et al. (2004) and Luo et al. (2007)
(1) A priori distribution : observed and forecast weekly precipitations are normalized with a

quantile-quantile method (mean uy = 0 ; standard deviation o = 1)

£x)

Any Distribution

= Unconditional
— Conditional

Standard Normal

)
S

1_

<4 Normalization of reci_}a)itation data,

taken from Luo et al. (200
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Statistical-dynamical prediction : methodology

Bayesian method adapted from Coelho et al. (2004) and Luo et al. (2007)

(2) Likelihood : the relationships expressing the prédictors as a function of the predictand are

learnt by linear regressions

— The predictors follow normal distributions depending on the predictand

m>

N34

R i

N34, |-

RMM1, |
RMM2,

RMM1_
RMM2,

4 Learning from reforecasts

Climatological relationship
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Statistical-dynamical prediction : methodology

Bayesian method adapted from Coelho et al. (2004) and Luo et al. (2007)

(2) Likelihood : the relationships expressing the prédictors as a function of the predictand are
learnt by linear regressions

— The predictors follow normal distributions depending on the predictand

Example : RMM1_ follows a normal distribution
> meanp=a +b R

m>

0,RMM1 o,RMM1" "o

i 2
» variance 0% .,

RMM1_

<@¢— | Climatological relationship
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Statistical-dynamical prediction : methodology

Bayesian method adapted from Coelho et al. (2004) and Luo et al. (2007)

(2) Likelihood : the relationships expressing the prédictors as a function of the predictand are
learnt by linear regressions

— The predictors follow normal distributions depending on the predictand

Example : RMM1._ follows a normal distribution
> mean u =a +b RMM1

f,RMMA1 f,RMMA1

i 2
> variance 0% ., .

RMMA1, RMM1_
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Statistical-dynamical prediction : methodology

Bayesian method adapted from Coelho et al. (2004) and Luo et al. (2007)

(2) Likelihood : the relationships expressing the prédictors as a function of the predictand are
learnt by linear regressions

— The predictors follow normal distributions depending on the predictand

Example : RMM1._ follows a normal distribution
> mean p = (a + b b R

m>

+
f,RMMA1 f,RMMA1 ao,RMM1) bf,RMM1 o,RMM1" "o

. 2 2 2
» variance 0% .+ 0% o 0% cuw

RMMA1, RMM1_

<@¢— | Climatological relationship
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Statistical-dynamical prediction : methodology

Bayesian method adapted from Coelho et al. (2004) and Luo et al. (2007)
(3) The statistical-dynamical prediction (i.e a posteriori distribution) is also a normal distribution

m>

Calibration

N34

Bridging

RMM1_
RMM2,

S
S Ak SELLLE 3

sd

{

> sd

4 Learning from reforecasts -<@€— | Climatological relationship
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How to use the statistical-dynamical prediction ?

> Probabilistic forecasting of the upper quintile of weekly precipitation

N - -~ Distribution a priori
2051 | P
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o / \\
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() . i \\“‘
0.0_ ----I_——_I'— 1 I |I yl I -I-___-I----
5 -4 -3 3 4

Upper quintile of the a priori
climatological distribution : ~ 0.84
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How to use the statistical-dynamical prediction ?

> Probabilistic forecasting of the upper quintile of weekly precipitation

‘O ) -—- Distribution a priori

E 0.5 | —— Distribution a posteriori
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0.0 - — —

Upper quintile of the a priori
climatological distribution : ~ 0.84

A posteriori probability of exceedance
of the upper quintile threshold
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Benefits of the statistical-dynamical prediction

» Improvement of discrimination depending on the location (ROC skill score at grid point level)

Semaine 3

Semaine 3

_30,

-20
=30

(CAL.+BR. MF ) - (S2S MF)

0, .
A _10, 3 .
20 £Egs
120 140 160 180 80920 140 160 180
S2S ECMWE (CAL.+BR. ECMWF ) - (S2S ECMWF )
. 0 R .
g%\ e
S _:. = S _1) i
‘(1. ol 5 . ot )
'\:.."_ Nl _20 i
120 140 160 180 020 140 160 180
| | — - e
0 0.2 0.4 0.6 0.8 1 -0.35 -0.25 -0.15 -0.05 0.05 0.15 0.25 0.35

A Left: ROC skill score of week-3 S2S prediction of the upper quintile of weekly

recipitation (3 x 3 grid points pooling)
E htp D|fference bgetwepen R(ﬁ)

C Sklﬂ score before and after implementation of

the statistical-dynamical Ia_p%)roach (calibration + bridging).

Reférence : MSWEP, DJ

996-2014 period.
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Benefits of the statistical-dynamical prediction

» Improvement of discrimination (ROC skill score over the whole domain)

@
o
| S2S MF
] Calib. MF
© (] Bridging MF
o B  Calib.+bridging MF

ROC skill score

0.0

Semaine 1 Semaine 2 Semaine 3 Semaine 4

° | SZS_ECMWF
o B Bridging ECKWF
8 o B  Calib.+bridging ECMWF
AN N < Evolution of the ROC skill score of
T I . s e Météo-France and ECMWF S2S forecasts
7 before the stat-dyn approach (black), after
O | .. & calibration ﬂblue), after bridging (orange),
O v. B = B = after calibration + bridging (red).
T - e Reference : MSWEP, DJF 1996-2013
o | period

Semaine 1 Semaine 2 Semaine 3 Semaine 4
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Benefits of the statistical-dynamical prediction

» What if we were able to forecast ENSO and MJO perfectly ? Calibration + bridging from ERA-

Interim
| S2S MF
) W Calib. MF
- «Q (] Bridging MF
O o ®m  Calib.+bridging MF
(] @  Bridging ERA-Interim
wn <] Calib.+bridging ERA-Interim
= 31
7))
O 9-
e
g Semaine 1 Semaine 2 Semaine 3 Semaine 4
| S2S ECMWF
] Calib. ECMWF
Q (] Bridging ECMWF
S B  Calib.+bridging ECMWF
= Bridging ERA-Interim
<] Calib.+bridging ERA-Interim

ROC skill score

Semaine 1

Semaine

N

Semaine 3

Semaine 4

<« Evolution of the ROC skill score of
Météo-France and ECMWF S2S forecasts
before the stat-dyn approach (black), after
calibration (blue), after bridging (orange),
after calibration +_ bridging ?red, after
bridgin from ERA-Interim  (dashed
orange), after calibration + bridging from
ERA-Interim (dashed red).

Ref_elaence: MSWEP, DJF 1996-2013
perio



Benefits of the statistical-dynamical prediction

» Improvement of the representation of ENSO impacts

La Nifa : MF semaine 3

_ : . —l . | _anl ol
30°9%0 140 160 180 30°9%0 140 160 180 30°1%0 140 160 180
El Nifio : OBS
O i mal
10l - L AL :’k\‘\‘
~20 NS

A Frequency of the upper wintile of weekly precipitation in La Nifia and E| Nifio
phases in observations (MS EP? and Meétéo-France S2S week-3 forecasts before
middle) and after (right) implementation of the statistical-dynamical approach.

JF 1996-2013 period. _ _
In white : no significant difference with the 0.2 baseline frequency based on a 95%
Student test.



Benefits of the statistical-dynamical prediction

» Improvement of the representation of MJO impacts

MJO ph. 4-5 : MF calib.+bridging S3

MJO phases 4-5 : OBS MJO phases 4-5 : MF semaine 3

0 =
. R =T =
E 3 AN T Zn
_10 - J R‘ . ~ -:. .' 2 .'
= N S N
=201 . Nt Nt
_ - - > - - _ T T = > - . T T - - >
<t 120 140 160 180 <0 120 140 160 180 €L 120 140 160 180

MJO phases 6-7 : OBS MJO phases 6—7 : MF semaine 3

A Frequency of the ulg er guintjle of weekly precipitation in MJO phases 4-5 and 6-7 in
observations (MSWE g)a Météo-France S2S week-3 forecasts before (middle) and

after{ri ht) implementation of the statistical-dynamical approach.

DJF 1996-2013 period. _ _
In white : no significant difference with the 0.2 baseline frequency based on a 95%

Student test.



What is the importance of each predictor ?

» Relative contribution of each large-scale predictor if forecast perfectly (i.e from ERA-Interim)

N34

RMM1

RMM2

Ordre d'importance théorique

<« Order of selection for each predictor in a
stepwise  forward selection scheme when
con&dermg only large-scale predictors from
reference data (ERA-Interim). _ N

In white : the predictor does not bring any additional
information.



RMM1 N34 Rf

RMM2

What is the importance of each predictor ?

» Relative contribution of each predictor in the calibration + bridging statistical-dynamical approach

Semaine 1 Semaine 2 Semaine 3 Semaine 4

A Order of selection for each predictor in a stepwise forward selection scheme,

;c\]j)plged at each lead time for the calibration + bridging scheme applied to the
etéo-France system. Forecast rainfall is also included in the selection.

In white : the prédictor does not bring any additional information.



SUMMARY

» Separate fits on each predictor enable to custom the predictor set without a whole re-fitting

> Improved probabilistic forecasts (discrimination, reliability), with crucial role of calibration and

additional rdle of briding

> Better representation of the impacts of ENSO and the MJO

» Bridging predictors become increasingly important with lead time at locations where provide

information
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