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The SMART project

• Our consortium:

• Thematic areas of the call addressed by our proposal:
• Machine Learning and Big Data for Disaster Risk Financing.
• Disaster Risk Financing Mechanisms to Manage Food Insecurity.
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Project Objectives

• Develop an innovative framework for the design of parametric triggers for 
weather index insurance, based on machine learning methods.

• Demonstrate the framework and its pathway to operationalization in a pilot 
study of multiple hazards in the Dominican Republic.

• Special focus on the agricultural sector, which tends to be severely affected by 
natural hazards.
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Index Insurance

• Innovative insurance instrument
• Payouts are based on an index (e.g. rainfall level) rather than on 

assessed losses
• Clients get paid if index exceeds a value pre-determined in the 

insurance policy
• The index measures deviations from the normal level of parameters 

such as rainfall, temperature, wind speed, crop yield and livestock 
mortality rates.
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Traditional Insurance
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Index Insurance
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Index insurance: pros and cons

• Payouts are based on observed 
environmental variables (indices)
• Fast funding after disaster
• Low administrative costs
• Index values cannot be 

manipulated

• Modelled index may not always 
reflect actual losses, i.e. basis risk: 
users may suffer losses and 
receive no payout, or vice-versa

• Key challenge – minimizing basis risk
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Basis Risk

Results
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Basis Risk

Basis risk -> mismatch between payouts and occurrence of losses
Spatial basis risk: when the station responsible for 

determining the index is far from the insured location 
Temporal basis risk: when the model identifies the 

event, but too early or too late
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Case Study: Dominican Republic
Task: Identification of Flood and Drought events between 2000-2019

Input Data

Rainfall Dataset

Soil Moisture Dataset
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Case Study: Dominican Republic

Target (output) Dataset:
Catalogue of Historical event (2000- 2019)
Sources:
EM-DAT, DesInventar, GLIDE, DFO, FLoodList
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Methodology proposed

Two machine learning algorithm:
- Neural Network (NN)

- Support Vector Machine (SVM)

Data Transformation from rainfall:

- Potential damage 

- SPI

Evaluation through confusion matrix:
- F1 Score as main metrics

- Precision-Recall curve more suitable in an 
imbalanced data problem

The machine learning algorithms box has its own 
framework.
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Machine Learning framework
Data quality assessment
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• NN and SVM outperforms 
logistic regression (LR), used 
in this work as a benchmark, 
according to F1 score (a).
• ML models improve their 

performance with increasing 
number of input dataset (b).

Results: Flood (1)
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• In (a) and (b), precision-sensitivity (PS) and 
ROC curve for the best-performing 
configuration, which we defined as the one 
with the highest AUC under the PS curve.

• (c) and (d) exhibit the behaviour of the 
predictions when changing the probability 
threshold.

• The predictions steadiness of the NN in (c) 
might be linked to the confidence 
calibration of modern neural network (Guo 
et al., 2017).

Results: Flood (2)
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• Each week of drought was 
counted as an event for the 
binary classification. This 
might explain the high values 
over all the metrics.

• Regardless, the machine 
learning models outperform 
LR even more evidently.

Results: Drought (1)
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• Similarly to the flood case, the PS and ROC
curve confirm that ML models provide an 
higher quality of the prediction.

• In (c) we encounter the same suspicious 
behaviour. Problems regarding the 
confidence of the probability estimates is 
an open research question that which 
goes beyond the aim of this work and 
warrants further research

Results: Drought (2)
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• Using ML we are able to reduce basis risk w.r.t traditional method such as Logistic 
Regression
• Importance of data enhancing technique and selection of adequate evaluation criteria 

when dealing with extreme events
• ML model better equipped to handle increase number of information
• The capability of these algorithms to rely on global data that are disentangled from the 

resources of a given territory, both from the point of view of climate data (e.g., lack of rain-
gauge network) and from the point of view of information about past natural disasters, is 
an appealing feature of this work that would be a first step towards increasing the reliability 
of weather index insurance program.

Conclusion

Cesarini, L., Figueiredo, R., Monteleone, B., and Martina, M. L. V.: The potential of big data and 
machine learning for weather index insurance, Nat. Hazards Earth Syst. Sci. Discuss. [preprint], 
https://doi.org/10.5194/nhess-2020-220, in review, 2020.
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