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Wilkes Subglacial Basin (WSB) - one of the largest 
marine-based sectors of the EAIS 
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a- Rate of future sea-level rise & timing 
of major retreat and thinning for the 
WAIS & EAIS. Note significant predicted 
longer-term contributions from the 
Wilkes Subglacial Basin region 
(DeConto & Pollard, 2016, Nature).

b- Predicted ice sheet configuration in 
year 2500 showing significant retreat in 
the northern Wilkes Subglacial Basin. 

c- Past behaviour of the Antarctic Ice Sheet during the 
warm mid-Pliocene- as a potential analogue for future 
warming. (DeConto & Pollard, 2016, Nature).

b- Maximum predicted mid-Pliocene ice sheet retreat. 
Note partial collapse of the EAIS in the northern Wilkes 
Subglacial Basin region.



Wilkes Subglacial Basin- a major tectonic 
feature in East Antarctica 
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Location of our study area in the Wilkes Subglacial Basin 
(WSB) (white rectangle) superimposed on BedMachine bed 
topography (Morlighem et al., 2020, Nature Geoscience) & 
a compilation of crustal thickness ranges from seismology
(updated from An et al., 2015, JGR). 

The Wilkes Subglacial Basin (WSB) is a major tectonic 
feature in East Antarctica. It stretches for ca 1400 km from 
the edge of the Southern Ocean, where it is up to 600 km 
wide towards South Pole, where it is less than 100 km wide.

While basins in the West Antarctic Rift System exhibit thin 
(ca 25-20 km thick) crust, the Wilkes Subglacial Basin is 
inferred from passive seismic studies to be underlain by ca 
40 km thick crust (e.g Hansen et al., 2016, JGR).

The thicker crust imaged by passive seismics is consistent 
with flexure of the more rigid East Antarctic lithosphere in 
response to uplift of the adjacent Transantarctic Mountains 
(TAM) (e.g. ten Brink et al., 1997, JGR).

However, alternative models based on gravity studies and 
numerical modelling infer a crustal root beneath the TAM & 
relatively thinner crust beneath the WSB 
(e.g. Bialas et al., 2007, Geology). 
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Wilkes Subglacial Basin- long-wavelength flexure and 
narrower glacially over-deepened grabens 

(a) Location of new flexural modelling profiles across the Wilkes Subglacial Basin 
(Paxman et al., 2019, JGR). Red lines show major faults; yellow dashed line shows 
flat lying subglacial bedrock plateaus (Paxman et al., 2018, GRL).

(b) Flexural responses to Cenozoic TAM uplift and Rennick Graben faulting.

(c) Glacial erosion focussed along the narrower Eastern, Central and Western 
basins  (Ferraccioli et al., 2009, Tectonophysics) within the Wilkes Subglacial Basin.

(d) Graben system in the Central Basin region where Beacon sediment and Jurassic 
magmatism have been modelled from aeromagnetic data (Ferraccioli et al, 2009).
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Beacon Superbasin and  Jurassic Ferrar Large 
Igneous Province in the Wilkes Subglacial Basin
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a. Aerogeophysical interpretation revealing the extent of the Beacon Superbasin
within the Wilkes Subglacial Basin region (Ferraccioli et al., 2009) superimposed on
Gondwana reconstruction (modified from Elliot et al., 2017, Geosphere).

b. Rocks of the Jurassic Ferrar Large Igneous province rocks have been inferred within
the Wilkes Subglacial Basin from aerogeophysics (Ferraccioli et al., 2009) & by
studies of subglacial geology from IODP drilling (modified from Cook et al., 2013,
Nature Geoscience).
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Regional Geothermal Heat Flux comparison in WSB
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• Note large differences in Geothermal Heat Flux estimation between 
different studies 
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Regional Geothermal Heat Flux comparison in WSB

• Note large differences in Geothermal Heat Flux estimation between 
different studies 
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WSB

• Note large differences in Geothermal Heat Flux 
estimation between different studies 
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Regional Geothermal Heat Flux comparison on 
profiles in WSB
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Regional Geothermal Heat Flux difference maps
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• Note large differences in Geothermal Heat Flux estimation between 
different studies 



11

Mertz Gl.
Ninnis Gl.

Cook
Gl.

Matusevich Gl.

M
S

Z

< 25 km
25 - 30
30 - 40
40 - 55

> 55 km
47

Cook Basins

P1

P2

P3

P4

P5

P6

Difference Martos et al. 2017 and Maule et al. 2005

Regional Geothermal Heat Flux difference maps

• Note large differences in Geothermal Heat Flux estimation between 
different studies 



Regional Curie Depth Point (CDP) comparison in 
WSB
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• Note large differences in Curie Depth point estimation between 
different studies 
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Regional Curie Depth Point (CDP) difference map

• Note large differences in Curie Depth point estimation between 
different studies 



Comparison of crustal thickness in WSB
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Crustal thickness merged from Shen et al. 2020, An et al. 2015 

seismic stations with the continental margin from Pappa 2019
Crustal thickness An et al. 2015
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• Crustal thickness derived from seismology 



Comparison of crustal thickness in WSB
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• Crustal thickness derived from gravity inversion / modelling 



Comparison of crustal thickness in WSB
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Difference in crustal thickness from seismic compilation to 

Pappa et al. 2019
Difference in crustal thickness from seismic compilation to 

Kusznir et al. 2014  
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• Seismic consist of a merged grid containing crustal thickness estimations from Shen et al. 2020, An et al. 2015 seismic 
stations and the continental margin from Pappa 2019

• Note large difference in crustal thickness between gravity and seismological estimations. Large variation in crustal 
thickness has strong implications on Geothermal Heat Flux estimation.



Novel integrate thermal modelling approach
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Workflow

Published in: 4D Antarctica, Algorithm Technical Baseline Document, 2021

• Current GHF estimation for WSB show large differences
and fall short in representing regional scale geological
features.

• Current estimations of Antarctic GHF are derived from
continental-scale analyses. Most of those estimates
(with the exaptation of machine learning approaches
Lösing et al 2020 and statistical analysis Stål et al 2021 )
are based on single observation e.g. Magnetics,
Seismology, Gravity etc.

• We propose an integrated modelling approaches to
estimate regional scale GHF a combination of airborne
radar and aeromagnetic data, crustal and lithosphere
thickness estimations from both satellite and airborne
gravity and independent passive seismic constraints
complimented with geological information.

• Our new approach links geophysical modelling tightly to
regional geology.



Novel integrate thermal modelling approach
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Published in: 4D Antarctica, Algorithm Technical Baseline Document, 2021

Define Crustal and lithospheric structure  Define thermal boundary conditions within the 
lithospheric structure  



Novel integrate thermal modelling approach
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Published in: 4D Antarctica, Algorithm Technical Baseline Document, 2021

Validate GHF estimation against independent Observables 



Crustal and Lithospheric heterogeneity imaged in 
WSB
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Flight lines (airborne radar)
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SPRI- yellow
Flight lines (aeromagnetic)
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GITARA, GANOVEX, WIBEM, MAGANTER- green
Land & marine gravity (small yellow dots)
Passive seismic stations (large coloured dots)
Dashed yellow lines indicate sub-basins in the WSB. Solid
white lines show selected profiles that we plan to model
as part of the new ESA 4D Antarctica project (but not
shown here) to investigate subglacial geology, crust and
lithosphere heterogeneity in the WSB and TAM region.
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• Note the location of the major glaciers including the
Mertz, Ninnis, Cook ice shelf, Matusevich, Rennick and
Lillie glaciers.

• Geology in the northern Victoria Land

• Segment of the TAM from PNRA-GANOVEX teams.

• Major basement fault systems flank the WSB. These are
traced from aeromagnetic imaging and include the newly
proposed Paleoproterozoic fault system related to the
exposed Mertz Shear Zone (Di Vincenzo et al., 2007, Prec.
Res.) and the Prince Albert Fault System (Ferraccioli &
Bozzo, 2003, Geol. Soc. London).

Ice velocity map
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• Shaded relief image of bedrock topography in the Wilkes

Subglacial Basin and TAM from BedMachine

(Morlighem et al., 2020,Nature Geoscience).

• Note the deep Cook Basins, where the bedrock deepens

inland of the grounding zone of the Cook ice shelf ice

streams. There is a potential connection between these

newly imaged coastal subglacial basins and the

previously identified Central Basin in the interior of the

EAIS.

Bedrock topography in the WSB and adjacent TAM
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• New shaded relief image of Free-Air gravity in the Wilkes
Subglacial Basin and adjacent TAM.

• Note the prominent Free-Air gravity low over the central
Cook Basin (CCB) that resembles the low over the northern
Rennick Graben (RG).

• The central Cook Basin lies on strike with the previously
imaged Eastern Basin and the Prince Albert Fault System.

• Satellite-derived gravity anomalies (Zingerle et al, 2019;
TIM R6e gravity field model) are shown as a transparent
backdrop to help fill in data voids.

New Free-Air Gravity Anomaly Map in the Wilkes Subglacial 
Basin and adjacent TAM



New high-pass filtered Free-Air gravity map
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High-pass filtered map obtained by subtracting low-
pass filtered anomalies at 200 km wavelength (twice
the min. wavelength resolved by GOCE satellite
gravity). The map enhances sub-basins within the
WSB including the newly identified CCB. Note linear
low connecting the thrusts of Matusevich Gl. with the
Eastern Basin flanking the PAFS.



New Bouguer Gravity Anomaly Map in the WSB 
and adjacent TAM
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• New shaded relief Bouguer gravity anomaly image for the
Wilkes Subglacial Basin and adjacent TAM.

• Note the contrast between the regional low over the
thick crust of the TAM & Eastern Basin region and the
highs over the Cook Basins area.

• A more subdued high is imaged over the Central Basin
region.

• A remarkable linear gravity high flanks the proposed
Paleoproterozoic fault system inferred from aeromagnetic
data.



New Bouguer gravity residual map
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Bouguer gravity residual map obtained by subtracting GOCE
satellite gravity anomaly field from the airborne derived
Bouguer gravity anomaly grid. The map enhances the
heterogeneity in gravity signatures of different sub-basins of
WSB. Note in particular the linear low over the CCB
interpreted as revealing a graben or pull apart basin



Satellite-gravity derived Crustal Thickness Map in 
the WSB and TAM

27

Mertz Gl.
Ninnis Gl.

Cook
Gl.

Matusevich Gl.

M
S

Z

< 25 km
25 - 30
30 - 40
40 - 55

> 55 km
47

Cook Basins

P1

P2

P3

P4

P5

P6

• Satellite-gravity derived crustal thickness map for the
Wilkes Subglacial Basin and TAM from recent lithospheric
modelling of Pappa et al., (2019, JGR).

• The model images linear regions of ca 25 km thick crust
beneath the Cook Basins and Western Basin & ca 27 km
thick crust beneath the Central Basin. This is thinner than
the ca 31 km thick crust previously modelled from
airborne gravity (Jordan et al., 2013, Tectonophysics).

• There are currently no passive seismic stations to help
constrain, validate or refute these gravity results. We plan
to compute alternative models, that include anomalously
dense Precambrian crust in place of thin crust.



Satellite-gravity derived Lithosphere Thickness in 
the WSB and TAM
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C r a t o n i c  L i t h o s p h e r e

• Satellite-gravity derived lithosphere thickness for the
Wilkes Subglacial Basin and adjacent TAM from
recent lithospheric modelling of Pappa et al., (2019,
JGR).

• The model indicates that the WSB is underlain by
thick cratonic lithosphere (150-220 km thick), while
thinner lithosphere (ca 120 km thick) underlies the
adjacent Ross Orogen.

• The South Western Basin (SWB) is underlain by
particularly thick lithosphere (ca 220 km), while the
coastal Cook Basins appear to be underlain by ca
120 km thick lithosphere. The lithosphere may have
been thinned here during Mesozoic (?) to Cenozoic
break-up between Australia and East Antarctica
(Eagles 2019).
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3

Archean (3), Paleoproterozoic (4) &
Mesoproterozoic (5) basement 

Early Ross (1) &
Mesoproterozoic (2) arcs (?)

1

Beacon sediments
& Neoproterozoic/Cambrian
metasediments • New aeromagnetic anomaly map of the Wilkes

Subglacial Basin and adjacent TAM.

• The aeromagnetic image helps unveil the cryptic and
likely composite Precambrian basement of the Wilkes
Subglacial Basin.

• Magnetic lows delineate areas where basement is likely
buried deeper beneath Beacon sediments and thicker
late Neoproterozoic to early Cambrian metasediments.

• Such heterogeneity in basement and cover rocks in the
WSB is a key finding for future assessments of
Geothermal Heat Flux (GHF) variability beneath this
key sector of the EAIS.

• Dotted blue line denotes the edge of the thick cratonic
lithosphere as modelled from satellite gravity data.

New aeromagnetic anomaly map of the WSB 
and TAM



Comparison of gravity products on profiles
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Conclusion
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• The Wilkes Subglacial Basin hosts a large and potentially unstable marine-based sector of the East Antarctic Ice 
Sheet.

• Recent continent scale GHF estimates show large differences and partially don’t represent the Crustal and 
Lithospheric heterogeneity in WSB

• Our new aerogeophysical and satellite images reveal heterogeneity in its subglacial geology, crust and 
lithosphere.

• We propose that buried beneath Beacon and older (likely early Cambrian to Late Neoproterozoic) sediments in 
the Wilkes Subglacial Basin lies a cryptic and composite Precambrian basement terrane.

• The heterogeneity in subglacial geology, crust and lithosphere beneath the Wilkes Subglacial Basin has 
significant additional implications for future assessments of Geothermal Heat Flux in this key sector of the EAIS.

Next steps 

• 2D & 3D Lithospheric models for WSB
• 3D thermal structure model for WSB based on the lithospheric models



Thank you !

Get in contact:

maxwe32@bas.ac.uk

@LoweMaximilian
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