

Seasonal stress inversion, pore pressure and shape ratio trends of RTS in Song Tranh2 reservoir, Vietnam

Izabela Nowaczyńska

Acknowledgments: Research work financed by the Ministry of Science and Higher Education (Poland) as part of internal research project No. 500-10-50

Resevoir triggered seismicity and reservoir induced seismicity

- "induced" describes seismicity resulting from an activity that causes a stress change that is comparable in magnitude to the ambient shear stress acting on a fault to cause slip;
- "triggered" is used if the stress change is only a small fraction of the ambient level.

Data

- Song Tranh2 reservoir;
- 10 stations;
- 180 events of 0.7≤ML≤3.6 recorded between August 28, 2013 and October 19, 2016;
 - High water period between November and April (48 events);
 - Low water period between May and October (132 events);
 - Shallow events, usually not deeper then 8km;
 - Most of events occur in northern part of STH2 (northern cluster).

Song Tranh 2 reservoir

Location of STR2 and the seismic network.

Spatial distribution and focal mechanism examples obtained for the available data: high water period (left) and low water period (right).

Stress Inversion

Confidence of principal stress axes

Confidence of principal stress axes

Principal stress orientation: high level period (left), low level period (right)

Shape Ratio

$$R = \frac{\sigma_1 - \sigma_2}{\sigma_1 - \sigma_3}$$

- Variations in R in relation to pore pressure, if detected, can have a physical origin but may also be spurious due to different inversion performance at different pore pressure levels.
- the catalog has been divided into windows of 20 events, shifted by 1

Results of Shape Ratio

Results of Shape Ratio

Calculations of Coulomb Failure Criterion

Pore pressure analyssis

Calculations for Lai Chau reservoir

Pore pressure

Water pore pressure reduces the normal stress within a rock while not changing the shear stress. Under any circumstances, an increase in water pore pressure means that a failure is more likely. The critical value of shearing stress may be made arbitrarily low by increasing the pore pressure.

$$Pp = \rho_w gz_w + \frac{dPp}{dz} (z - z_w)$$

Results for whole period

Results for high water period

Results for low water period

Software

- IS-EPOS Platfrom (data events and water level);
- STRESSINVERSE by V. Vavryčuk;
- Matlab (sorting and selecting data).

Conclusions

- The principal stress σ1 orientation during high water levels is rotated about 30° toward the NW in comparison to the low water stress state derived from focal mechanisms.
- The Shape Ratio results showed instability for the extreme values of R and rotation of the principal stress (small numer of events in the window may also play a role)
- Significant variations of shape ratio are result of focal mechanism variability indicated by high and low water level stress orientations results
- The more variable nodal plane orientations the lower shape ratio
- Pore pressure data sugest that there can be some corelation between magnitude and pore pressure (especially visable for high water period)

References

- Gupta, H. K. (1992). Reservoir induced earthquakes, Developments in Geotechnical Engineering 64.
- Kwiatek, G., P. Martínez-Garzón, and M. Bohnhoff (2016). HybridMT: A MATLAB/shell environment package for seismic moment tensor inversion and refinement, Seismol. Res. Lett. 87. doi:10.1785/0220150251
- Lizurek, G., J. Wiszniowski, N. Van Giang, B. Plesiewicz, and D. Q. Van (2017). Clustering and stress inversion in the Song Tranh 2 reservoir, Vietnam. Bull. Seismol. Soc. Am. 107 2636-2648. doi:10.1785/0120170042
- Vavryčuk, V. (2014). Iterative joint inversion for stress and fault orientations from focal mechanisms, Geophys. J. Int. 199 69-77. doi:10.1093/gji/ggu224