A snowfall downscaling scheme for mountainous terrain

Nora Helbig, Rebecca Mott, Yves Bühler, Michael Lehning, Perry Bartelt

WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland

vEGU21: Gather Online 19-30 April 2021

Motivation

To improve fine-scale snow cover modeling over mountainous terrain, an efficient downscaling scheme for coarse-scale snowfall is required.

<u>Goal:</u> A snowfall downscaling scheme that takes into account wind-snowfalltopography interactions

Recipe:

- Generate a large, diverse data pool of modelled fine-scale snowfall distributions in mountainous terrain
- Develop statistical parameterization

Ingredients:

1) Large set of simulated topographies covering a broad range of topographic characteristics

2) Non-hydrostatic and compressible atmospheric model *ARPS (Advanced Regional Prediction System)* (Xue et al., 2001) to compute fine-scale wind fields

3) Snow transport module of Alpine3D to compute preferential deposition i.e. fine-scale snowfall distributions (Lehning et al., 2008)

<u>Goal:</u> A snowfall downscaling scheme that takes into account wind-snowfalltopography interactions

Recipe:

- Generate a large, diverse data pool of modelled fine-scale snowfall distributions in mountainous terrain
- Develop statistical parameterization

Ingredients:

1) Large set of simulated topographies covering a broad range of topographic characteristics

2) Non-hydrostatic and compressible atmospheric model *ARPS (Advanced Regional Prediction System)* (Xue et al., 2001) to compute fine-scale wind fields

3) Snow transport module of Alpine3D to compute preferential deposition i.e. fine-scale snowfall distributions (Lehning et al., 2008)

First ingredient: Simulated topographies that cover a broad range of topographic characteristics

Topographies have domain size of L = 3 km, horizontal resolution of $\Delta x = 30$ m and cover:

- Different spatial mean slope angles ζ between 10° and 36°
- Terrain correlation length ξ between 200 m and 1000 m ٠
- Standard deviation of elevation σ up to 365 m •

Three example topographies:

 σ

<u>Goal:</u> A snowfall downscaling scheme that takes into account wind-snowfalltopography interactions

Recipe:

- Generate a large, diverse data pool of modelled fine-scale snowfall distributions in mountainous terrain
- Develop statistical parameterization

Ingredients:

1) Large set of simulated topographies covering a broad range of topographic characteristics

2) Non-hydrostatic and compressible atmospheric model *ARPS (Advanced Regional Prediction System)* (Xue et al., 2001) to compute fine-scale wind fields

3) Snow transport module of Alpine3D to compute preferential deposition i.e. fine-scale snowfall distributions (Lehning et al., 2008)

Second ingredient: Fine-scale ARPS wind fields for all topographies

Goal: A snowfall downscaling scheme that takes into account wind-snowfalltopography interactions

Recipe:

- Generate a large, diverse data pool of modelled fine-scale snowfall distributions in mountainous terrain
- Develop statistical parameterization

Ingredients:

1) Large set of simulated topographies covering a broad range of topographic characteristics

2) Non-hydrostatic and compressible atmospheric model ARPS (Advanced Regional *Prediction System*) (Xue et al., 2001) to compute fine-scale wind fields

3) Snow transport module of Alpine3D to compute preferential deposition i.e. fine-scale snowfall distributions (Lehning et al., 2008)

<u>Third ingredient:</u> Fine-scale snowfall distributions for all topographies

Fine-scale snowfall distributions using a snow transport model (Lehning et al., 2008) forced with *ARPS* wind fields for all topographies under controled conditions:

- Neglected erosion, saltation, drifting snow sublimation
- Coarse snowfall P_{coarse} is 2 mm, 5 mm and 8 mm; P_{coarse} and P are for one time step

Generated fine-scale snow deposition for $P_{\text{coarse}} = 2 \text{ mm}$ and $v_{\text{coarse}} = 3 \text{ m/s}$:

<u>Results:</u> Fine-scale modeled snowfall patterns

Fine-scale modeled snowfall patterns are similar, though enhanced with increasing coarse-scale snowfall P_{coarse} or coarse-scale wind speed v_{coarse}

Modeled fine-scale snow deposition patterns for one topography (different color scales):

<u>Results:</u> Scaling factors for the snowfall downscaling scheme

Fine-scale modelled snowfall *P* correlates well with coarse snowfall *P*_{coarse} and
1) Fine-scale vertical wind component and a terrain slope parameter (called "wind" scheme)
2) Fine-scale slope parameter and aspect relative to coarse wind direction wd_{coarse} (called "aspect" scheme)

Results: Modeled and downscaled snowfall - Spatial patterns

Downscaled snowfall P_{dsc} describes spatial variability of modelled snowfall P well

- Spatial patterns similar for P_{dsc}^{wind} as well as for the simpler P_{dsc}^{aspect}
- Magnitudes are better described by P^{wind}_{dsc}

Modeled and downscaled snow deposition patterns for one topography with P_{coarse} = 2 mm:

Results: Modeled and downscaled snowfall - Per aspect and slope

Downscaled and modeled snowfall patterns are similar across all aspects and for various P_{coarse}

- Larger snowfall on leeside increases and lower snowfall on windward side decreases with increasing slope
- Small differences with modeled *P* for the steepest slope angle bins

Binned per local slope angle ξ with $\Delta \xi = 10^{\circ}$ and local aspect Ψ with $\Delta \Psi = 30^{\circ}$:

<u>Results:</u> Performances per aspect and slope

Overall low normalized root-mean-square error (NRMSE) for both downscaling schemes and P_{coarse}

- NRMSE increases with slope angles and is slightly larger on windward slopes
- Wind scheme has lower NRMSE than aspect scheme
- NRMSE similar for all *P*_{coarse} (not shown)

Binned per local slope angle ξ with $\Delta \xi = 10^{\circ}$ and local aspect Ψ with $\Delta \Psi = 30^{\circ}$:

 P_{coarse} = 2 mm and for v_{coarse} = 3 m/s

Conclusions

- Fine-scale modeled snowfall patterns (only preferential deposition) are similar for different coarse-scale snowfall and wind speed
- Large correlations between fine-scale modeled snowfall, vertical wind component as well as terrain aspect relative to coarse wind direction
- Two statistical downscaling schemes describe new snow patterns well for downscaled coarse snowfall of 2 mm, 5 mm and 8 mm :
 - 1) A wind scheme performs better than a simpler aspect scheme
 - 2) Performances decrease slightly on windward mountain sides and for steeper slopes (larger 40°)

Outlook

- For coarse wind speed of 5 m/s errors increase especially for steeper slopes (computed for one subset of all topographies only) →Further investigation currently underway to better account for different coarse wind speed
- Evaluation on real data

References

- Xue et al. (2001). The Advanced Regional Prediction System (ARPS) A multi-scale, non-hydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications, *Meteorol. Atmos. Phys.*, 76, 143–165, <u>https://doi.org/10.1007/s007030170027</u>.
- Lehning et al. (2008). Inhomogeneous precipitation distribution and snow transport in steep terrain, Water Resour. Res., 44, W07404, doi: 10.1029/2007WR006545.
- Helbig et al. (2017). Parameterizing surface wind speed over complex topography, J. Geophys. Res. Atmos., 122, 651–667, doi: 10.1002/2016JD025593.

Contact: helbig@slf.ch

