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Twiss 1977’s summary of a generic dislocation density 
piezometer. Dislocations are produced in a crystalline material by 
the application of differential stress, and their density scales with 
that stress. A critical point to note is that EBSD can only measure 

GNDs, but another class of dislocations exists which does not 
contribute to lattice curvature but are still induced by stresses: 

‘statistically stored dislocations’ (SSDs). The proportion of SSD to 
GND must be inferred or known a priori.

ρ Total dislocation density
α Material constant of order 1, 1.314 from McCormick, 1977
µ Shear modulus, 31GPa
b Burger's vector, 4.9138E-10 m
k Stress exponent, 2
σ Differential stress

Dislocation density piezometry theory and parameters

EBSD measurements and derived dislocation 
density

Because EBSD measures the orientation of a crystal 
lattice, the curvature of a continous lattice may be 

measured to an angular precision of 0.03 degrees using 
the de-noising proposed by Hielscher et al., 2020. By 
assuming that the curvature is due to the presence of 
dislocations, the material’s known slip systems can be 

populated with theoretical dislocations until the observed 
curvature is explained - hence the term 

‘geometrically-necessary dislocations’ (GNDs). 

An important distinction between µXRD and EBSD is 
that each µXRD point is an independent measurement, 
while EBSD relies on relative misorientations between 

points.

 As shown in Befus et al. 2019, µXRD shows little difference in the residual stresses in 
quartz grains from of the two Yellowstone eruptions, despite their dramatic difference in 
eruptive styles. EBSD-derived dislocation densities suggest stresses in agreement with 
published µXRD values from the same grains. 
 We conclude that elastic residual stresses record pre-eruptive magmatic environment. 
Viscous shear during lava emplacement generates the majority of plastic deformation, which 
swamps the signal of lesser amounts of plastic deformation produced in the reservoir or 
conduit. Pre-eruption processes are likely the source of elevated elastic residual stresses, 
and we favor an interpretation where the stresses arise from force-chain impingements within 
crystal mushes prior to eruption.
 This study also illustrates the complementary nature of µXRD with EBSD. EBSD quickly 
and inexpensively shows microstructure within potential or former µXRD targets at the cm to 
the nm scale. Many of the microstructures illustrated in this study by EBSD, such as the 
ellipsoidal features in the maps to the left, are masked by the coarser spatial resolution of 
µXRD and require further investigation. Further, reasonably accurate calculation of GND 
densities by EBSD is a recent innovation and much is yet to be learned. In particular, 
proportions of GND to SSD are not well studied, and the significantly lower GND fraction 
inferred for the Summit Lake lavas may be the result of prolonged cooling and thus recovery 
of the more-mobile GNDs, or it could be due to the grain-scale strain heterogeneities 
observed in EBSD.
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Sample Grain step size 
(µm)

Mean GND 
density Mean 2σ GND % Mean 2σ

48 0.5 4.19E+12 264 110 7.1 257 705
0.3 3.85E+12 150 73 20.0
0.5 3.11E+12 161 65 14.3

50 0.5 2.23E+12 111 77 20.0 101 192

0.5 4.52E+12 759 409 0.9
0.5 4.84E+12 775 362 1.0
0.5 4.03E+12 203 124 11.1
0.5 3.65E+12 209 84 10.0
0.5 3.86E+12 203 89 11.1
0.5 3.65E+12 293 137 5.0
0.5 3.58E+12 294 212 4.5
0.5 3.47E+12 296 110 4.8
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Y45: Huckleberry Ridge 
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Orientation to C Peak Smearing Residual StressExample Pattern
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Y74: Summit Lake Lava 
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µXRD data (Befus et al., 2019)

Using synchrotron Laue X-ray microdiffraction 
(µXRD), the elastic strain of quartz crystals can 

be measured directly by 
streatching/smearing/misplacing of diffraction 

patterns. This elastic strain is primarily the 
result of applied deviatoric stresses on the 
crystal, and may be preserved as defects or 

dislocations within the grain’s lattice.
The reported residual stress for each sample

represents the mean and 1σ standard deviation 
of the individual spot measurements, n, whose 

distributions produce the stress maps. 
Residual stress uncertainty is estimated to be 

~30 MPa, which we calculated using
the observed distribution of residual stress in 

the undeformed quartz.

Inverse pole figure map with full color range 
set to 1 degree from map mean orientation 

(key on right), illustrating minimal lattice 
misorientation across map area. 

Kernel-averaged misorientation (KAM) map 
of same area, maximum value set to 0.2 
degrees. Linear gouges are from polish.

GND density map showing that GND density increases by up to an 
order of magnitude over ~1 µm distances in abundant local 

microstructures - an increase of >100 MPa. 

4E12

5E13

Polarized light micrograph of Huckleberry 
Ridge sample 45, grain 49, showing µXRD 

damage to epoxy underlying grain.

EBSD data from same grain, with band contrast values (left) highlighting dauphiné twins and grain boundaries (light blue vs dark 
blue, and brown/pink vs blues in center map). Rightmost map shows kernel-averaged misorientation (KAM) with color scale set to 

1 degree, illustrating the formation of local dislocation substructures near rim of grain.

 The magnitude of forces at play in active magmatic systems is poorly 
constrained because direct observation is difficult. Additional complications 
include short time scales and the likelihood of overprinting signatures of 
deeper processes by the catastrophic nature of eruption. Deformation of 
crystal lattices is one signature of magmatic force common to all crystals 
that survive eruption. Quartz crystals have documented residual elastic 
stresses in the hundreds of MPa measured using synchrotron µXRD. These 
stresses may be caused by several processes: crystal-crystal impingement 
in a crystal mush, explosive fragmentation, or shear in flowing lavas. To 
better unravel when these stresses were imparted relative to the ultimate 
eruption, we combine µXRD with new electron back-scatter diffraction 
(EBSD) measurements. EBSD helps constrain subgrain and twin boundary 
relationships, geometrically-necessary dislocation density (GND), and 
plastic deformation.

 We target quartz grains from a violent Yellowstone super-eruption and 
from a large-volume rhyolitic obsidian lava flow (Huckleberry Ridge Tuff and 
Summit Lake lava, respectively). Samples from both Yellowstone eruptions 
preserve roughly the indistinguishable amounts of elastic residual stresses, 
ranging from 100 to 150 MPa. EBSD indicates a GND density of ca. 4E12, 
with slightly higher values in the Summit Lake Lava. Diffraction peak 
broadening provides a record of plastic deformation using µXRD. Diffraction 
peaks are significantly more smeared in Summit Lake lava (0 to 0.15 
degrees) than in Huckleberry Ridge Tuff (~0.06 degrees). Subgrain and 
dauphiné twin formation in both samples is documented by both µXRD and 
EBSD. 

Introduction: a record of magmatic processes at the 
lattice scale


