Identification of meteo-hydrological extreme events at the regional scale: the Northwestern Italy case study

Matteo Pesce¹, Alberto Viglione¹, Alessandro Borre¹,², Simone Gabellani², Jostvon Hardenberg¹, Daniele Ganora¹

¹Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Torino, Italy
²CIMA Research Foundation, Savona, Italy
Data and Methods

Time series of daily discharges from 108 sites in Northwestern Italy (2000-2019) are used in the application of a non-parametric method for the extraction of extreme events.

The empirical non-exceedance frequency $F(i,j)$ of the daily runoff values at day $i$ at each station $j$ and a corresponding empirical return time $t_r$ are calculated:

$$t_r(i,j) = \frac{1}{1 - F(i,j)}$$

A daily regional return time ($T_R$), considering sites with available data, is determined for each day $i$:

$$T_R(i) = \frac{1}{n} \sum_{j=1}^{n} g(j) \cdot \text{window}(t_r(i,j), w)$$

where the function window() searches the maximum values of $t_r$ within a sliding time window of fixed width (15 days) and $g(j)$ are the site-related weights.

The maxima of $T_R$ are then extracted by intersecting the series with a low-pass filtered mean of $T_R$ (filter of length 100 days).
Data and Methods

Events Identification

- Start of the event
- Maximum
- End of the event
Results

The largest regional events from the extracted series, together with the corresponding local maxima at each station.
The largest regional events from the extracted series, together with the corresponding local maxima at each station.

\[ g(j) = \ln(A) \]
The largest regional events are correlated with the annual ETCCDI indices averaged over the study region. Maximum 5-day precipitation (Rx5day), maximum 1-day precipitation (Rx1day) and the total precipitation above 99th percentile (R99pTOT) are significantly positively correlated ($\alpha = 0.05$) to the annual maximum regional return times ($T_R$). This is the case both with and without the application of weights (right and left matrices respectively).

Spearman’s rank correlation matrices of TR maxima and ETCCDI indices. * indicates statistically significance correlation ($\alpha = 0.05$)
Discussion and Conclusions

• Results show that while for some events all sites experience very high local return periods, for others the distribution of the event magnitude is quite uneven and some sites don’t face extremes at all.

• The results obtained in terms of Sperman’s correlation between the regional return times and ETCCDI indices don’t seem to be sensitive to the weighting of local return times by catchment area, so the applied method is quite robust.

• Spearman’s correlation results confirm what already found at the catchment scale. The Rx5day index appears to be particularly suited for describing flood events both at the catchment scale (in particular for large catchments) and at the regional scale, probably due to the spatio-temporal structure of rainfall events associated to this index.

• Further work could focus on changing the length of the window or the filter applied for the identification of the events, in order to evaluate the sensitivity of the entire procedure to this parameter, possibly leading to variations in the structure of the extracted events.