
Súres Conception Science project for ambient dose rate mapping Quality assurance issues

P.Kuča, J.Helebrant, SÚRO Praha, P.Bossew, BfS Berlin

SAFECAST bGeigie Nano

mobile monitoring&mapping for public

educative! facilitates understanding ambient radiation, measurement and radiation protection

QA issues – partly still to be solved

Ill Lack of awareness about importance of QA issues can result into severe misinterpretation !!!

Uncertainty of a result

- has significant influence on its interpretability
- may destroy reliability of conclusions and decisions based on it

CALIBRATION: count rate [CPS] => ambient dose rate [nSv/h]

depends on

- Detector properties: sensitivity, energy response, linearity, etc
- Conditions of measurement: standardised measurement protocol
- Device variability: variability between individual devices
- Detector handling: abide conditions of measurement

QUALITY ASSURANCE (QA)

Characterization of the detector

by manufacturer and/or user verified by certified laboratory;

- **Measurement protocol** <u>the difficult and non-conventional part!</u> deviation from standard protocol leads to additional uncertainty;
- <u>Uncertainty budget</u> different sources
 - systematic counting statistics, uncertainties from calibration, etc.
 - random not keeping measurement protocol

this presentation is distributed under the Creative Commons Attribution 4.0 International License (CC BY 4.0)

Safecast – a Citizen Science project for ambient dose rate mapping

Quality assurance issues

Petr Kuča, Jan Helebrant

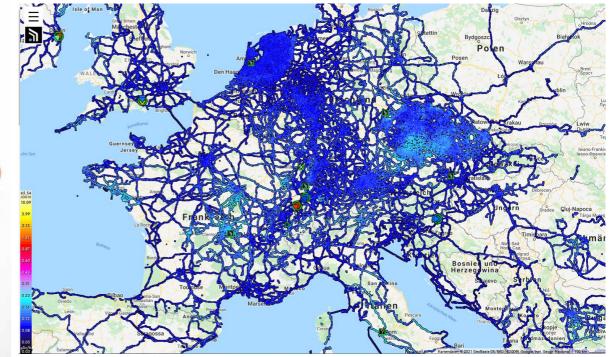
National Radiation Protection Institute (SÚRO)

Praha, Czech Republic

Peter Bossew

German Federal Office for Radiation Protection

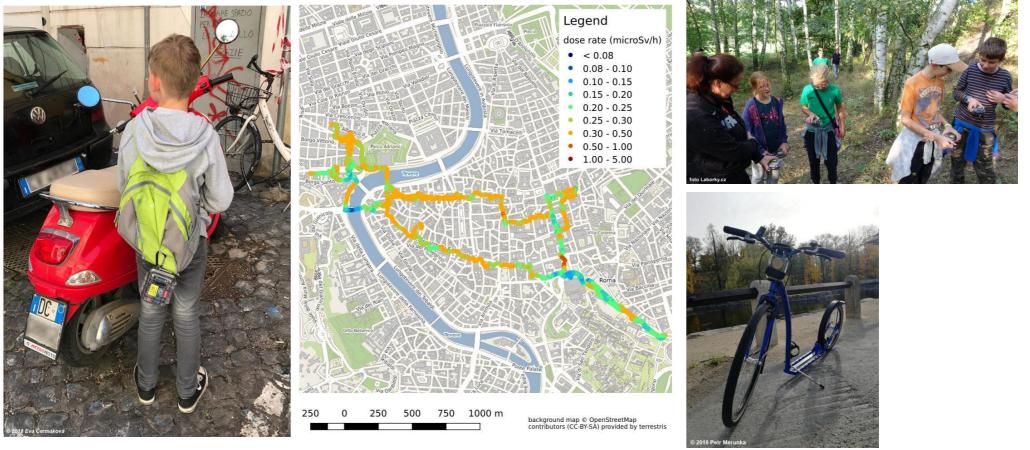
Berlin, Germany



About SAFECAST

- <u>Safecast</u> was initiated 2011 after Fukushima
- standard instrument <u>bGeigie Nano</u>: GM counter + GPS, measurements in log file on SD card

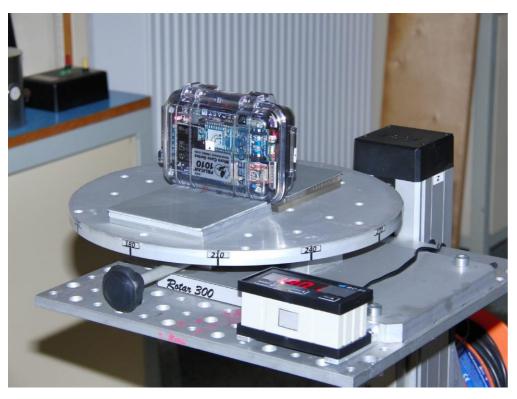
SAFECAST



https://safecast.org/

bGeigie Nano benefits

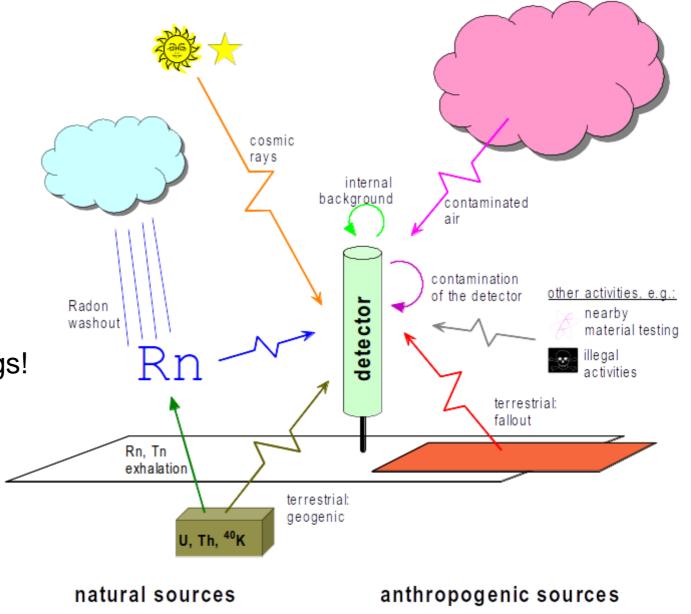
- easy handling; allows acquisition of large amounts of data, more than professional institutions can usually achieve;
- educative! facilitates understanding ambient radiation, radiation measurement and radiation protection.



QA issues – partly still to be solved

- traditional metrology: characterization of the instrument in standard configurations/conditions, using **accredited** methods
- additional: citizen scientists are no trained metrologists
- → device handling not assured, measurement protocol often not abided, understanding uncertainty not deep

VS.



Physical origin of ambient dose rate

The signal recorded by a G-M counter is the sum of contributions from various sources.

Important to know for interpretation of readings!

(source: AIRDOS report; European Atlas of Natural Radiation)

Composition of the ADR signal

registered counts =	
internal background	radioactivity in detector components, electronic noise
+ cosmic radiation	mainly muons; neutrons almost not registered by G-M; intensity depends mainly on altitude above sea level and (minor effect) geomagnetic latitude
+ atmospheric gamma radiation	 <u>natural:</u> Rn progeny (²¹⁴Pb, ²¹⁴Bi) – usually 1-30 Bq/m³ ²²²Rn, high temporal variability; 10 Bq/m³ ²²²Rn → ca. 2.5 nSv/h. Thoron progeny usually much less. Cosmogenic radionuclides ⁷Be, ²²Na: very low ADR <u>artificial:</u> can be substantial temporarily after releases, e.g. ^{132,131}I, ¹³²Te after Chernobyl long term: resuspended fallout: very low ADR
+ terrestrial gamma radiation	 <u>natural:</u> ⁴⁰K, ²³⁸U, ²³²Th series γ radiating radionuclides in the ground; Rn progeny washed to the ground after rain: can be substantial effect! <u>artificial:</u> Fallout from atmospheric bomb tests and accidents (Chernobyl); mainly ¹³⁷Cs

Calibration

Conversion of count rate, counts per second

 \rightarrow ambient dose rate ADR, nSv/h

Conversion factor depends on

- Detector properties:
 - sensitivity
 - energy response
 - dose rate linearity
 - internal background
 - cosmic response (muon and γ response are different)
 - variability between devices
- Detector handling:
 - height above ground,
 - angular orientation of detector against vertical
 - shielding (car, human body, etc.)

 \rightarrow characterization of the instrument; classical metrology, to be done in laboratories

→ definition of measurement protocol, to ensure reproducibility and repeatability

Quality assurance (QA)

• Characterization of the detector:

by manufacturer or user, ideally verified by certified laboratory; follows established procedures

- <u>Measurement protocol:</u>
 - This is the difficult and non-conventional part!
 - Citizen scientists are usually no trained metrologists; therefore little aware of the influence of the protocol on the result.
 - Deviation from standard protocol leads to additional uncertainty; current work: through particular experiments involving intentional "mishandling" estimate this uncertainty component.

<u>Uncertainty budget:</u>

- different sources: counting statistics, systematic uncertainties (from calibration uncertainties)
- Uncertainty of a result has very important influence on its interpretability and on the reliability of conclusions and decisions based on a measurement (or a set of measurements) !

Lack of awareness about importance of measurement protocol and uncertainty can lead to severe misinterpretation!

Thank you for your attention

