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Elements of a shear crack system
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Tip (Granier, 1985; Kim et al., 2004)

Tip splays (e.g. horse tail)

Edge splays (e.g. R1 Riedel shears)
Linking fractures (e.g. R2 and P shears)
Wall damage zone (halo zone)

Edge (Richard et al., 1995)

Halo (Faulkner and Mitchell, 2011)

Linking (Katz et al., 2004)



A complete shear crack system

tip damage zone

* Can high resolution
hypocenter distributions
be interpreted as
damage distribution ?

* |s the structural
evolution of a damage

zone determined by
scale and earthquake
history ?
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Fault damage zone scaling

* Field observations indicate that damage zones scale with displacement up to =1 km
* Faults with displacements larger that 100 m typically have complex damage zones

comprising several strands with their own fracture « halo »

 Structures within the damage zones of the larger faults may be resolved with high
resolution relocation methods
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2004 Parkfield California sequence
M.,,6.0, strike-slip
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* Hypocenters focussed
within a few hundreds
of m of the principal

slipping plane

* Mature fault zone with
>150 km displacement

* Narrower hypocenter
zone than suggested
by the average
damage zone vs
displacement scaling
relationship
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2020 Monte Cristo, NV
sequence
M,, 6.5, strike-slip

* Hypocenters spread in 5 km
wide zone

* Fault does not have a
continuous expression on
the surface

e Hypocenters are more
focussed at depth, around

two main en-echellon
segments

e Zone of aftershocks
broadens toward the
surface
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, NLL-SSST-coherence
2020 Lone Pine, CA sequence

M,, 5.8, normal
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* Most hypocenters are located
close to a bent surface that
may be interpreted as a
unique slip surface or as a
series of steeply dipping, sub-
parallel faults
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* Hypocenters on map define a
boundary on this surface,
presumably the edge of slip
zones, combining a foreshock,
the main shock and one large
aftershock

10.0 km : 10 km

20200324 20200523 20200623 20200724
OTime




NLL-SSST-coherence (2570 events)

2020 Magna, UT sequence
M,, 5.7, normal

* Main fault plane is a W-dipping
normal fault

» Aftershocks forms a complex
pattern updip of the hypocenter,
imaging antithetic faults in the
hanging wall and their
intersections with the main fault

* This seismicity and a shallower
up-dip cluster of aftershock
seismicity correspond to clusters
of background seismicity




Scaling depends on fault maturity
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* In analog experiments
(edge dislocation case),
the width of shear zones
peaks just before the
formation of connecting
faults

 Shear localization along a
fault implies narrowing of
the zone of active
damage with time



Fault maturity at a given time depends on scale
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* Would a M8 on the
SAF activate a lot more
aftershocks off the
main slip plane than
Parkfield?
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Conclusions

* Seismicity distribution during an earthquake sequence reveals the
geometrical complexity of the activated fault system.

* Geometrical complexity is highly variable depending on case, and
may relate to the « maturity » of the fault system.

* Interpreting aftershock distribution as damage suggests a distinction
should be made between

* Near fault damage, which may persists along mature faults in relation with
rupture related stress (dynamic and rupture tips) and asperity abrasion

e Off fault damage related to various secondary structures, the number and
size of which presumably peak during fault growth

* Damage zones observed on the field may integrate the whole history
of fault growth and slip, complicating their understanding in term of

scaling relationships



