
Power-law frequency scaling of surface temperature spatial degrees of freedom
—estimated from instrumental data, reanalysis and climate model simulations—

TORBEN KUNZ1 AND THOMAS LAEPPLE1,2

1 Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Research Unit Potsdam, Tele-

grafenberg A45, Potsdam, 14473, Germany
2 MARUM – Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen,

Bremen, 28334, Germany

ABSTRACT

What is the spatial scale of climate fluctuations, and how does this scale depend on the timescale under consideration? To answer

this question, the spatio-temporal correlation structure of global surface temperature fields is characterized, for the period 1850-present, by

estimating frequency spectra of the effective spatial degrees of freedom (ESDOF). These ESDOF spectra serve as a simple summarizing metric

of the frequency-dependent spatial auto-correlation function. ESDOF spectra are estimated from: (a) the HadCRUT global gridded temperature

anomaly dataset, based exclusively on instrumental measurements, including detailed error variance estimates; (b) the NOAA 20th Century

Reanalysis; and (c) a large ensemble of CMIP historical climate model simulations. When comparing (i) error corrected ESDOF spectra from

the instrumental data to (ii) those obtained from the reanalysis and the model simulations, with HadCRUT data gaps imposed, results are found

to be highly consistent among the three data sources. When the analysis is applied to the entire globe, the ESDOF spectra exhibit an almost

uniform power-law frequency scaling with about 100 ESDOFs at monthly timescales and only about 2 ESDOFs at multidecadal timescales.

Second-order differences in this scaling behaviour are found when the analysis is restricted to various spatial subdomains of the globe, namely,

the tropics, extra-tropics, land areas, and ocean areas. A few implications of the diagnosed ESDOF reduction towards the longer timescales are

briefly discussed.

The 2 minutes PICO presentation (EGU21-13589, a contribution to session NP3.2/CL4.36):

  

Power-law frequency scaling of surface temperature Effective Spatial Degrees Of Freedom (= ESDOF)

Torben Kunz1  and  Thomas Laepple1,2    –––   1Alfred Wegener Institute, Potsdam, Germany;  2University of Bremen, Germany

Definition   ESDOF = global mean local PSD / PSD of global mean (= number of independent samples; coherent fields → ESDOF = 1)

Data   Global 5°x5° gridded 2m-temperature fields:

+ Instrumental: HadCRUT4 (1850-2019)
- spatio-temporal coverage: 60%
- including spatial error covariances
- assuming no temporal error correlation

+ Reanalysis: NOAA20CR.v3 (1850-2015)

+ Models: CMIP6-historical (1850-2014)
- 27 models x 3 members = 81 runs

Method   PSD estimation from gappy fields:

+ Bias-free from auto-covariance function
- no interpolation, using all data points

+ HadCRUT-corrected = HadCRUT – Errors

+ NOAA20CR.v3, CMIP6-hist with gaps imposed

Outcome   Highly consistent among the three datasets:

+ Uniform freq. scaling: ESDOF(freq) ~ freq^0.8

+ annual ESDOF ≈ 100, multi-decad. ESDOF ≈ 2

+ second-order differences when computed from land/ocean/extra-tropics/tropics

+ for additional information / details: see associated display material

Fig. 1: Power spectral density (PSD) Fig. 2: ESDOF spectra

mean local

global mean ESDOF
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1. Definition
A simple measure of the effective spatial degrees of freedom (ESDOF) of a time-varying spatial field (e.g., a

global near-surface temperature field) is given by D = σ2
loc/σ

2
glb, where σ2

loc is the spatial average of the local

variance and σ2
glb is the variance of the spatial average (see, for example, Smith et al. 1994; Jones et al. 1997).

For fields covering the entire globe, the spatial averages are global averages. The interpretation is as follows: If

the field is constant in space (globally coherent fluctuations), then D = 1. For smaller scale fluctuations, we have

D > 1 and the value of D specifies the effective number of independent spatial samples. Thus, the larger the value

of D, the smaller the average spatial scale of the fluctuations. To obtain a frequency-dependent ESDOF measure

D(f), we replace the mean local variance σ2
loc by the mean local power spectral density (PSD) Sloc(f), and the

variance of the global mean σ2
glb by the PSD of the global mean Sglb(f). Accordingly, we define

D(f) =
Sloc(f)

Sglb(f)
. (1)

As in the frequency-independent case, this measure characterizes the spatial scale of the fluctuations, but now

separately at each frequency.

2. Data
The above frequency-dependent ESDOF measure is estimated from monthly mean global gridded 5◦×5◦ near-

surface temperature deseasonalized anomaly fields, obtained from the following three data sources.

a. Instrumental: HadCRUT4 (1850–2019)

The HadCRUT4 dataset is based exclusively on instrumental data, combining temperature measurements from

land weather stations with sea surface temperature measurements from ocean platforms (Morice et al. 2012). Grid

boxes without any data in a given month are represented as data gaps. The average spatio-temporal coverage of this

global dataset is ∼ 60%. The dataset is complemented by detailed error variance estimates, including spatial error

covariances for ocean grid boxes (due to moving ocean platforms), and land station measurements are assumed

to be uncorrelated in space. For our analysis we further assume errors for both land and ocean grid boxes to be

uncorrelated in time. Finally, in our analysis we ignore the error component from the bias correction uncertainty

as it is found to be very small (unless, perhaps, at the very lowest frequencies). Thus, we use only the ensemble

mean of the HadCRUT4 dataset.

b. Reanalysis: NOAA20CR version 3 (1850–2015)

We use the ensemble mean of the NOAA 20th Century Reanalysis version 3 dataset (NOAA20CR.v3 hereafter;

see Slivinski et al. 2019), remapped to a global 5◦×5◦-grid to match the grid of the HadCRUT4 dataset. This allows

to optionally impose the HadCRUT4 data gaps onto the reanalysis.

c. Climate models: CMIP6-historical (1850–2014)

We use an ensemble of 81 (= 27 models with 3 members each) CMIP6-historical climate model simulations

(Eyring et al. 2016), from each of which the PSDs and ESDOFs are estimated. Data are remapped to a global

5◦×5◦-grid to match the grid of the HadCRUT4 dataset, which allows to optionally impose the HadCRUT4 data

gaps onto the model data.
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3. Method
For the HadCRUT4 dataset, as well as for the reanalysis and model simulations with HadCRUT4 gaps imposed,

we need to estimate the mean local PSD, Sloc(f), and the PSD of the global mean, Sglb(f), from gappy data fields.

Thus, the mean local PSDs cannot be simply computed from the Fourier transform at each gridpoint due to the

data gaps. Likewise the PSD of the global mean cannot be simply computed from the time series of the global

mean (although there are at least some grid boxes at each time step), because of the incomplete spatial coverage

affecting the variance (or PSD) estimates. Often this issue is addressed by interpolating across the gaps in time

and/or space. However, interpolation always introduces some artificial spatial/temporal correlation structure to the

data which, in the present context, should be avoided as it would contaminate the spatio-temporal statistics to be

characterized by the ESDOF measure. Furthermore, interpolation usually requires to discard some fraction of the

data between which the gaps are too large for meaningfully applying interpolation.

Therefore, we apply an alternative approach to estimate the PSD from gappy data fields, which avoids any

interpolation and, at the same time, uses all data points available in the dataset. The approach relies on comput-

ing the PSD as the Fourier transform of the temporal auto-covariance function. Details of the approach will be

presented in a forthcoming paper by the authors that is currently in preparation. The approach yields unbiased

PSD estimates, and the additional uncertainty (due to the data gaps) is still relatively small given the HadCRUT4

spatio-temporal coverage.

To obtain error-corrected PSDs for the HadCRUT4 dataset, we estimate the PSDs from the raw HadCRUT4

data fields and subtract from them the PSDs of the error components. These error PSDs are computed from the

error covariance matrices (provided with the HadCRUT4 dataset) in a way that is fully consistent with our approach

to estimate PSDs from gappy data fields, although the errors are specified as variances.

From the reanalysis and the model simulations with HadCRUT4 gaps imposed we compute the PSDs in ex-

actly the same way as described above for HadCRUT4. We also compute the PSDs from the complete fields to

investigate spatial non-stationarity effects of the data gaps. For the model simulations, we compute the PSDs sep-

arately for each ensemble member and then compute the ensemble mean PSD. From these ensemble mean PSDs

we finally compute the frequency-dependent ESDOF measure.

When the analysis is restricted to land or ocean areas, mixed grid boxes (covering partly land and partly ocean)

are excluded. Thus, the sum of the land- and ocean-only areas is less than the surface area of the entire globe.

4. Results
a. HadCRUT4 error-corrected vs. NOAA20CR.v3 and CMIP6-historical with gaps imposed (Figures 1 and 2)

• The PSD and ESDOF estimates are highly consistent among the three data sources.

• The largest discrepancy in terms of PSDs appears to be the stronger ENSO variability over tropical land

areas in the CMIP6-historical simulations, compared to HadCRUT4 and NOAA20CR.v3.

• Since both the local and the global PSD over-estimate this variability by the same factor, the corresponding

ESDOF spectra do not exhibit a discrepancy at ENSO timescales compared to the other data sources.

• The PSDs and ESDOFs exhibit a power-law frequency scaling. The scaling exponent of the ESDOF spectra

is near 0.8. Only at subannual timescales the scaling is somewhat flatter (i.e., it has a smaller exponent).

• There is a pronounced reduction of ESDOFs towards lower frequencies. Specifically, there are about 100 ES-

DOFs at annual and only about 2 ESDOFs at multi-decadal timescales.
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b. HadCRUT4 error-corrected vs. raw (Figures 3 and 4)

• From the PSDs it is obvious that the effect of the error correction is largest at the high frequencies because

we assume temporally uncorrelated errors.

• The effect is much larger over ocean areas than over land areas, because measurement and sampling errors

are larger for sea surface temperatures.

• Since errors from ocean grid boxes are spatially correlated, they also have an effect on the PSD of the global

mean because they do not average out as much as the errors from land grid boxes.

• In terms of the ESDOF spectra, however, the error correction effect appears to be restricted mainly to tropical

ocean areas.

c. NOAA20CR.v3 with vs. without gaps (Figures 5 and 6)

• Over tropical areas the data gaps do not have a notable impact on the PSDs and ESDOFs.

• Over extra-tropical ocean areas, the unobserved regions (i.e., the gaps) appear to have above-average vari-

ance at subannual timescales.

• But the mean local PSD changes by the same factor as does the PSD of the mean, indicating that the estimated

spatial correlation structure is not altered by the data gaps. Accordingly, the ESDOF spectrum over extra-

tropical ocean areas is not affected much by the data gaps.

• Over extra-tropical land areas, however, from subannual to decadal timescales the PSD of the mean is smaller

without gaps whereas the mean local PSD is hardly affected, indicating that the variability in the unobserved

regions is less correlated (in itself and/or with the observed regions), compared to the average spatial corre-

lation in the observed regions.

• Accordingly, the ESDOFs are underestimated over extra-tropical land areas when the analysis is restricted

to the observed regions.

d. CMIP6-historical with vs. without gaps (Figures 7 and 8)

• PSDs and ESDOF spectra are much smoother because they are based on ensemble means, compared to the

HadCRUT4 and NOAA20CR.v3 spectra.

• The effect of the data gaps on the model simulations is similar to the effect on the reanalysis.

• However, the above-average variance in the unobserved regions over extra-tropical ocean areas, already

found for the reanalysis at subannual timescales, extends across all timescales in the model simulations, but

only in terms of the mean local PSD. This indicates that the variability in the unobserved regions is less

correlated (in itself and/or with the observed regions), compared to the average spatial correlation in the

observed regions.

• Accordingly, the ESDOFs are underestimated over extra-tropical ocean areas from annual to multi-decadal

timescales when the analysis is restricted to the observed regions.
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(d) Extra−tropics
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(e) Extra−tropical land
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(f) Extra−tropical ocean
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(g) Tropics
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(h) Tropical land
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(i) Tropical ocean

FIG. 1. Mean local PSD and PSD of the mean, for the entire globe and for various spatial subdomains; for HadCRUT4 error-corrected, and for

NOAA20CR.v3 and CMIP6-historical with HadCRUT4 gaps imposed.
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(b) Land (A = 0.18)
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(c) Ocean (A = 0.54)
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(d) Extra−tropics (A = 0.50)
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(e) Extra−tropical land (A = 0.10)
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(f) Extra−tropical ocean (A = 0.28)
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(g) Tropics (A = 0.50)
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(h) Tropical land (A = 0.09)
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(i) Tropical ocean (A = 0.27)

FIG. 2. ESDOF spectra for the entire globe and for various spatial subdomains; for HadCRUT4 error-corrected, and for NOAA20CR.v3 and

CMIP6-historical with HadCRUT4 gaps imposed. The area fraction A of each domain, relative to the entire globe, is indicated at the top of

each panel. Note: The smaller the area fraction A, the smaller the ESDOF value given the same spatial scale of the fluctuations.
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(c) Ocean
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(d) Extra−tropics
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(e) Extra−tropical land
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(f) Extra−tropical ocean
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(g) Tropics
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(h) Tropical land
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(i) Tropical ocean

FIG. 3. As Fig. 1, but for HadCRUT4 with and without error correction.
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(c) Ocean (A = 0.54)
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(d) Extra−tropics (A = 0.50)
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(f) Extra−tropical ocean (A = 0.28)
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(h) Tropical land (A = 0.09)
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(i) Tropical ocean (A = 0.27)

FIG. 4. As Fig. 2, but for HadCRUT4 with and without error correction.
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(e) Extra−tropical land
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(f) Extra−tropical ocean
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(h) Tropical land
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(i) Tropical ocean

FIG. 5. As Fig. 1, but for NOAA20CR.v3 with and without HadCRUT4 gaps imposed.
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(f) Extra−tropical ocean (A = 0.28)
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(h) Tropical land (A = 0.09)
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FIG. 6. As Fig. 2, but for NOAA20CR.v3 with and without HadCRUT4 gaps imposed.
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FIG. 7. As Fig. 1, but for CMIP6-historical with and without HadCRUT4 gaps imposed.
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FIG. 8. As Fig. 2, but for CMIP6-historical with and without HadCRUT4 gaps imposed.
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