The influence of a supraglacial debris cover on the mass balance, dynamics and climate change response of the Djankuat Glacier, Caucasus, Russian Federation

Yoni Verhaegen¹, Philippe Huybrechts¹, Oleg Rybak¹,²,³ & Victor V. Popovnin⁴

¹Earth System Science & Departement Geografie, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, ²Water Problems Institute, Russian Academy of Sciences, Gubkina Str. 3, 119333 Moscow, Russia, ³FRC SSC RAS, Theatralnaya Str. 8a, 354000, Sochi, Russia, ⁴Department of Geography, Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 119991, Russia.

Introduction

- The Djankuat glacier, North Caucasus [43°12’ N, 42°46’ E]: WGMS reference glacier for the Caucasus area
- In 2010 AD: 13% of the glacier surface debris-covered, compared to total of 26.2% in the whole Caucasus
- Warming climate: debris coverage expected to increase (melt out, lower discharge, slope instability, etc.)

Methodology

- Use of 1D coupled ice dynamics-supraglacial debris cover model
- Debris input: mass flux surrounding terrain + meltout processes
- Effect on characteristics and behaviour of the Djankuat Glacier?

Study area

Main results – steady state characteristics

- Mass balance
- Geometry

Main results – climate change response: reaction to ELA increase of 50 m compared to the 1967/68-2006/07 average

- Retreat rate
- Thinning rate of ablation zone
- Annual runoff production

- Thick debris: melt-reducing effect
- Formation of slower-flowing downwasting tongue: relatively thinner but longer ablation zone
- Response to a climate change: ice mass loss dominantly comprises thinning rather than glacier retreat (longer response times)
- In an equal climatic setting the steady state debris-covered glacier produces higher annual runoff volumes than the clean ice glacier (less melt but higher ice volume)