Differential uplift of three Pliocene sea level indicators in southern Argentina driven by upwelling Lamont-Doherty Earth Observatory
asthenosphere through the Patagonian slab window
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Uplifted marine bivalve and mollusk shell beds deposited during the early Pliocene s + :.
record relative sea level during a time when temperatures and COz were higher than Seismic VEIOCIty to temperature

today (e.g., Pagani et al., 2010). These deposits occur at strikingly differentially
uplifted elevations along a near-longitudinal transect (Fig., below). In this study, we
use geodynamic models of mantle flow to constrain how changes in dynamic &«‘e
topography have differentially uplifted these sites with the ultimate goal of
estimating the global mean sea level in the early Pliocene

(Richard et al, 2020; Steinberger, 2016; Yamauchi & Takei, 2016)
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Beginning ~18 Ma the Chile
Rise spreading ridge began A 65-75m 5.15+0.35 Ma
subducting beneath the South
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American plate (Breitsprecher 170-185m 5.1£0.30 Ma

& Thorkelson, 2009). As the c 345-389m 4984023 Ma

ridge migrated north, a gap

formed where the Nazca slab &S &S 1250

had previously been
subducting, allowing
underlying hot aesthenosphere
to flow into the mantle wedge.
Both the slow-velocity slab
window (200 km) and the fast-
velocity Nazca slab (500 km)
have been imaged using
adjoint seismic tomography
(Lloyd et al., 2020) and indicate
interplay between upwelling
and downwelling mantle flow.
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Pressure and temperature calculations (Nickel & Green, 1985; Taylor, 1998) exploit available major element compositions from
olivine, orthopyroxene, clinopyroxene, and garnet hosted in high-temperature (>970 °C) peridotites, garnet-spinel

harzburgites, and garnet lherzolites from the Pali-Aike Volcanic Field (see maps). These independent temperatures agree with

the tomography-based Earth model (lower right panel).

The combination of the previously subducted Nazca slab and asthenospheric
upwelling through the overlying Patagonian slab window have produced short
wavelength changes in dynamic topography that explain a sharp gradient in the
elevations of Pliocene sea level indicators along the eastern coast of Argentina.
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The suite of dynamic topography results from 11 postprocessing plate correction models for the 36 model configurations consisting of eight
unique Earth models allows us to isolate specific model runs that fit the observed elevation gradient best. While model runs fit the southern
two shoreline sites well, the northernmost site remains poorly fit. To better understand the full range of possible geodynamic processes at

play, we plan to broaden the Earth model suite to include more tomography models of the lower mantle and the range of radial viscosities.
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