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Background

● Snow on sea ice impacts the global climate in many, sometimes contrasting 
ways

● Also introduces uncertainty into sea ice thickness retrievals
● Direct, in-situ observations of snow on sea ice are infrequent and sparse
● Snow-on-sea-ice models can provide snow depth and density estimates for 

sea ice thickness retrieval; model uncertainty can contribute to sea ice 
thickness uncertainty

● How can we observationally constrain model free parameters? Can we 
estimate uncertainties in these parameters?
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NESOSIM: Snow on sea ice modelling

● NASA Eulerian Snow On Sea Ice Model (Petty et al, 
2018) 
v 1.1, https://github.com/akpetty/NESOSIM

● Simple 2-layer model, up to 50x50 km resolution, 
designed for use with sea ice thickness retrievals 
from lidar observations from ICESat-2

● Processes:
– Snow accumulation from reanalysis snowfall products
– Redistribution of snow due to sea ice drift (from observations)
– Wind packing (transfers snow between layers, reanalysis wind)
– Blowing snow lost to leads and atmosphere (sea ice 

concentration from observations)
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NESOSIM was recently updated to version 1.1

● Snowfall input (from reanalysis products) scaled to 
CloudSat observations, as per Cabaj et al. 2020

● Additional loss term introduced: atmospheric loss 
(blowing snow independent of sea ice concentration)

● Extended model domain, covers peripheral seas
● Other bug fixes
● More information: 

https://zenodo.org/record/4448356
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NESOSIM v1.1 impact on sea ice thickness from ICESat-2

● Freeboard, NESOSIM-
derived snow depth, 
and corresponding sea 
ice thickness from 
ICESat-2

● r002/r003 refers to 
ICESat-2 freeboard 
product releases, r003-
v11 is derived using 
NESOSIM v1.1 (r003 and 
r002 use NESOSIM 1.0)

Plot: A. Petty (2020)
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Current work: free parameter calibration

● Wind packing factor
– How much snow is transferred between layers 
– Impacts snow depth and density; ρfresh = 200 kg/m3, ρold = 350 kg/m3

● Blowing snow factor (atmospheric + lead loss)
– How much snow is lost to wind, depends linearly on wind speed (above a 

threshold of 5 m/s)
– 2 terms: lead loss (depends on sea ice concentration) and atmospheric loss 

(independent of SIC)
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Calibration with respect to Operation IceBridge 
measurements

● Airborne snow depth measurements, available 
from 2009-2019, generally in March and April

● Previously used to validate NESOSIM v 1.0
● Currently using the GSFC (Kurtz et al., 2013) 

product for calibration, 2010-2015, as well as the 
median of GSFC, JPL  (Kwok and Maksym, 2014), 
and SRLD (Koenig et al., 2016) products
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What is the impact of varying wind packing and blowing 
snow factors?

● Parameter doubling test: 
– Best results from 2x blowing snow, 1x 

wind packing
– Doubling wind packing while keeping 

1x blowing snow worsens agreement
● How can we determine optimal 

parameter values? → Markov Chain 
Monte Carlo approaches
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Markov Chain Monte Carlo (MCMC) algorithm

● Goal: maximize likelihood (a measure of the difference between NESOSIM snow depth and OIB 
observations) 

● Start with a prior parameter value and its corresponding likelihood
● For each iteration 

– Randomly generate a new set of parameters a small step away from the previous parameter value (step size 
based on prior parameter uncertainty)

– Calculate the likelihood function (difference between modelled and observed values, weighted by uncertainty)
– Examine the ratio of likelihood functions between the new and previous parameter values; accept if the ratio is 

greater than a value chosen from a uniform distribution
● This favours higher likelihoods but allows for some variation so that we don’t get stuck in a local 

maximum
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Single parameter MCMC calibration for blowing snow and 
wind packing 

● Single-parameter optimization with respect to OIB 
observations, GSFC algorithm (2010-2015), 1000 
iterations

● Parameters calibrated: blowing snow (both 
atmospheric and lead loss simultaneously); wind 
packing

● Prior parameter values of 2.9e-7 for blowing snow and 
5.8e-7 for wind packing, optimal values as suggested 
by MCMC: 3.96e-7, 3.32e-7 (respectively)

● Larger spread in wind packing parameter distribution 
compared to blowing snow
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2-parameter MCMC optimization for blowing snow and wind 
packing, simultaneously

● Optimal parameter values are much larger than from the single-parameter calibration (showing 
results using multi-product median OIB, but similar result for GSFC product): Prior values of O(1e-7), 
posterior parameter values on the order of 1e-6 (calculated with 3000 iterations)

● Next step: investigate how this looks in the NESOSIM model output



12

Snow depth with default and optimized parameters (m)

● End-of-season snow 
depth for 1 year 
shown (polar view)

● Very little difference 
in snow depth, 
despite vast 
difference in 
parameters
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Snow density (kg/m3) is more impacted 

● End-of-season snow density 
for 1 year shown (polar view)

● MCMC-optimized snow 
density is close to lower 
layer prescribed density (350 
kg/m3)

● Overall density high 
compared to historical Soviet 
drifting station obs; expect 
average of ~320 kg/m3 at end 
of season
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Snow depth (layer by layer) and density time series

● Almost all of the snow is transferred to the lower layer; the blowing snow parameter is tuned very high to 
compensate

● The overall density is too high (as compared to drifting station climatologies): further constraints on density are 
needed
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Next steps

● Continue with parameter optimization
● Introduce observation-based density constraints (from historical 

drifting station observations;  Radionov et al., 1997) to better 
constrain wind packing

● Snow depth validation against later years of OIB
● Estimation of snow depth uncertainty derived from parameter 

uncertainty estimates; corresponding sea ice thickness uncertainty 
estimates
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Summary

● NESOSIM updated to version 1.1, but the free parameters remain 
difficult to constrain

● Single parameter calibration using Markov Chain Monte Carlo: 
blowing snow (atmospheric + lead loss) is better constrained than 
wind packing

● 2-parameter MCMC calibration: produces similar snow depth, but 
much higher snow density, needs further constraints
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