EGU GENERAL ASSEMBLY 2021

HYDRO-ECONOMICS TRADEOFF SURFACES TO GUIDE UNIT COMMITMENT IN PRODUCTION COST MODELS

QUENTIN PLOUSSARD¹, NATHALIE VOISIN², THOMAS VESELKA¹, AND KONSTANTINOS OIKONOMOU²

¹Argonne National Laboratory ²Pacific Northwest National Laboratory

04/28/2021 Chicago, IL

CONTENT

- Introduction
 - Production cost models for power systems
 - Hydro scheduling tools
 - Model adequacy
 - Research objective
- Proposed analysis
 - Scenarios to compare
 - Process flow diagram
 - Hydro-economics surfaces

PRODUCTION COST MODELS (PCM) FOR POWER SYSTEMS

- Based on an optimization model
- Identify an optimal production schedule of several power plants simultaneously
- To minimize a total production cost
- Subject to a set of constraints (e.g. power plant maximum/minimum production capacity, maximum ramp-up/ramp-down)

$$\begin{aligned} Min \ z &= \sum_{g,t} c_g P_{g,t} + c'_g u_{g,t} \\ \text{s.t.} \\ &\sum_g P_{g,t} = d_t \\ u_{g,t} \underline{P_g} \leq P_{g,t} \leq u_{g,t} \ \overline{P_g} \\ -\underline{P_g^r} \leq P_{g,t} - P_{g,t-1} \leq \overline{P_g^r} \\ u_{g,t} \in \{0,1\} \end{aligned}$$

. . .

HYDRO SCHEDULING TOOLS (HST)

- Power production depends on:
 - Physical constraints:
 - Turbine efficiency η
 - Hydraulic head H
 - Water release Q
 - Environmental constraints:
 - Minimum release rate
 - Maximum 24-hr release change

 $P_t = \eta \cdot \rho \cdot g \cdot Q_t \cdot H_t$ $H_t = f(V_t)$ $V_{t+1} = V_t - Q_t + I_t$

$$\begin{split} Q_t &\geq Q_{min} \\ -M &\leq Q_t - Q_{t+\Delta t} \leq M, \\ 0 &\leq \Delta t \leq 24 \end{split}$$

. . .

MODEL ADEQUACY

Model	PCM	HST
Spatial scope	Potentially large power systems	Limited to a small fleet of hydropower plants (HPPs)
Flexibility of HPP generation	Very flexible	Limited by physical and environmental constraints
Representation of physical water constraints	Limited	Detailed
Representation of environmental constraints	Limited	Detailed

RESEARCH OBJECTIVES

- Assess the discrepancy in hydropower representation between conventional PCMs and hydro scheduling tools
- Propose a new method to account for hydrological and environmental aspects in PCMs by using parameter surfaces derived from hydro scheduling tool results

PROPOSED ANALYSIS Scenarios to compare

- Scenario 1: HPP generation and economic results are calculated solely with the PCM
- Scenario 2: Locational marginal prices (LMPs) are first calculated with PCM. LMPs are used by the HST as HPP generation drivers.
 Finally, HPP generation from the HST are used as fixed generation by the PCM in order to calculate economic results.
- Scenario 3: Locational marginal prices (LMPs) are first calculated with PCM. LMPs are used by the HST as HPP generation drivers for multiple hydrology conditions: water releases and forebay elevations. This is used to generate surfaces (i.e. bivariate functions) for various HPP parameters: P_min, P_max, Generation, Ramp_min, Ramp_max. These surfaces are used to deduce weekly parameter values for specific hydrology conditions.

These weekly parameter values are then used by the PCM to refine its economic results

PROPOSED ANALYSIS

Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

PROPOSED ANALYSIS Hydro-economics surfaces

- The two surfaces represent the values for minimum and maximum power output (P_min and P_max) depending on the weekly water release and forebay elevation
- The two red dots represent the extracted P_min and P_max values for specific hydrology conditions

P_min and P_max surfaces at Glen Canyon Dam during a given week

CONCENERGY Argonne National Laboratory is a U.S. Department of Energy laborator managed by UChicago Argonne, LLC

THANK YOU

qploussard@anl.gov

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

