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Introduction

Why snow slab failure modelling?
* Snow properties may influence the size of avalanche release
e Useful for estimation of potential avalanche release areas
and volumes
* Avalanche hazard assessment in a more precise manner



FE Model for Numerical Propagation saw test

Two dimensional snow cover model with three snow layers
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Geometrical model for weak surface hoar layer: On the basis of field observations
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Material model for snow and ice
Isotropic Elastic-plastic-damaging material model

Yield surface (Von mises (ice))

f=0—-(o,+He')=0 6
where,
o: Stress, Isotropic hardening _
g, : Yield stress Yield point —+

H : Hardening modulus

ePl: axial plastic strain
. oL Loading (elastic) —-
Condition for damage initiation

pl
di — Damage initiates
gOPl forwp =1

Wwp =
el plastic strain
go!: plastic strain at the onset of the damage.
Stress in damaged material: c=(1—-D)c

o :stress in an undamaged state
D : scalar damage variable. (D=1, for fully damaged material)



Material model for snow and ice

Damage evolution:
* linear variation of stresses during damage evolution

e Relation of incremental plastic displacement and incremental damage variable

-pl - pl .- .
. LEP _ uP u]’fl: Plastic displacement at failure
u?l u?l uPl: Plastic displacement

L :Characteristic length (Generally element size)

* Plastic displacement at failure (complete damage, D=1)

upl — ZGf/O' 0 gy is the yield stress at damage initiation
/ Y Gr :Fracture energy

Properties of ice used for simulation (through literature survey)

|ce density =917 Kg/’m3, Elastic modulus=950 MPa

Plasticity hardening modulus=95 MPa, Yield stress (0)=2.25 Mpa,

Plastic strain at which damage initiates [Egpl ) =3e-6, Fracture energy of ice (G¢ )= 1.05 J/m’




Material model for snow and ice

Yield criterion (snow): Extended Drucker-Prager Model

Yield function: F=q-— (d + ng) — ptanlB =0
q

/3 , _
q= ES:S' Mises equivalent stress ac

1 L
S=0+ Epl, Deviatoric stress

p=— 3 trace(o)

(20.07)
cohesion of the material, d = Chl
(Uc + GT)
tang = 3 (o, —or) o.: Uniaxial compressive strength
anf =

(o, + or) o;: Uniaxial tensile strength



Estimation of snow properties through mechanical tests

Mechanical tests
Uniaxial tension and compression

Estimation of snow elastic modulus
Maximum tangent modulus through stress-strain curves
Elastic modulus through loading unloading tests

Uniaxial loading-unloading tests in tension and compression

Snow type: Natural

Snow density range: 100-400 Kg/m3
Strain rate: > 1e-4 s ( Moderate to high strain rates)
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Stress-strain curve

Snow type: Round grain

Density: 197 Kg/m? -J
Mode of loading: Tension

Strain rate: 2.5e-4 s’}
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Variation of snow elastic modulus with density
(Experimental data)
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Estimation of snow properties through mechanical tests

Estimation of snow failure strength (peak stress in stress-strain curves) in tension and
compression

Snow strength vs snow density
80
+ Tensile strength
E 60 = Compressive strength ="
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s |
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Power laws for snow elastic modulus and strengths (Through curve fitting of
experimental data)

a b R’
0 b E-mod (MPa) 332.03) 2.8 095
E,oco=a < ) T-strength (kPa) 41.72 1.25 0.61
Pice C-strength (kPa) | 3844.85|  3.83|  0.98




Estimation of snow properties through mechanical tests

Estimation of Drucker-Prager parameters for snow
* Estimated Drucker-Prager parameters using density dependent power laws
for snow strength

Variation of Cohesion and 3 angle
with Snow density
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Other snow properties used for simulation
* Hardening Modulus: 1-10 MPa (assumed, no major influence for small damage
initiation plastic strain)
e Associated flow
* Damage initiation plastic strain: 1e-6 (assumed, (for near brittle failure as
observed in experiments))
* Fracture energy: 0.03-0.15 J/m? (linear variation with density, Experimental data)



Results: Variation of propagation length in top slab with density

Effect of top slab densit
ect of top slab density on  For densities higher than 150 Kg/m?
propagation length

fracture in the slab starts from the top
~current_work
surface
* Propagation length increases with
density as Strength is density dependent
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Results: Variation of propagation length in top slab with thickness

Effect of top slab thickness on
* Propagation length increases with top propagation length
. = 4.0
slab thickness £ ) .
* Trend of variation is similar to the one ﬁ 3.0 S o 0 d
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Results: Variation of propagation length in top slab with slope angle

No major influence of slope angle on propagation length in top slab is observed

60 degree
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Effect of slope angle on propagation 50 degree

length
¢ Current_PST_TS:10 kPa TS: Tensile strength

X Gaume et. al. 2015_TS:4.5 kPa
X Gaume et. al. 2015_TS:5.5 kPa

Top slab thickness: 0.2 m, Density: 300 Kg/m?3
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Conclusions

The proposed model for snow was used successfully used for
modelling fracture of overlying slab in numerical Propagation saw
test

Propagation length was found to increase with top slab density and
thickness whereas no major influence of slope angle is observed

For snow with densities greater than 150 Kg/m3 fracture in the slab
starts from the upper surface

The modelling approach used seems promising and can be extended
for snow slab failure modelling in multi layer snow cover with varying

densities

Thank You



