Modeling Snow slab failure in Propagation saw test using Drucker-Prager model EGU21-13989

Agraj Upadhyay^{*,}°, Puneet Mahajan° and Rajneesh Sharma[†] * Snow and Avalanche Study Establishment, Chandigarh-160036 ° Department of Applied Mechanics, IIT, Delhi-110016 [†] Kakushinteki Engineering Solution (H.P.)-175001 Corresponding author's email: <u>agraj.upadhyay@dgre.drdo.in</u> Postal Address: RDC SASE, HIMPARISAR, Sector-37A, Chandigarh, India-160036 Other authors' email: rajnish0007@gmail.com, mahajan@am.iitd.ac.in

Introduction

Why snow slab failure modelling?

- Snow properties may influence the size of avalanche release
- Useful for estimation of potential avalanche release areas and volumes
- Avalanche hazard assessment in a more precise manner

FE Model for Numerical Propagation saw test

Two dimensional snow cover model with three snow layers

Geometrical model for weak surface hoar layer: On the basis of field observations

Field photograph Jaemeison et. al. 2000

Geometrical model for weak layer

Material model for snow and ice

Isotropic Elastic-plastic-damaging material model

Yield surface (Von mises (ice))

 ε^{pl} : plastic strain ε_0^{Pl} : plastic strain at the onset of the damage.

Stress in damaged material:

 $\sigma = (1 - D)\overline{\sigma}$

 $\overline{\sigma}$:stress in an undamaged state

D : scalar damage variable. (D=1, for fully damaged material)

Material model for snow and ice

Damage evolution:

- linear variation of stresses during damage evolution
- Relation of incremental plastic displacement and incremental damage variable

$$\dot{D} = \frac{L\dot{\varepsilon}^{pl}}{u_f^{pl}} = \frac{\dot{u}^{pl}}{u_f^{pl}}$$

- u_f^{pl} : Plastic displacement at failure u^{pl} : Plastic displacement
 - : Characteristic length (Generally element size)
- Plastic displacement at failure (complete damage, D=1)

 $u_f^{pl} = 2G_f / \sigma_{y0}$

 σ_{y0} is the yield stress at damage initiation G_f :Fracture energy

Properties of ice used for simulation (through literature survey)

Ice density = 917 Kg/m³, Elastic modulus= 950 MPa Plasticity hardening modulus= 95 MPa, Yield stress (σ_0)=2.25 Mpa, Plastic strain at which damage initiates (ϵ_0^{pl}) =3e-6, Fracture energy of ice (G_f)= 1.05 J/m²

Material model for snow and ice

Yield criterion (snow): Extended Drucker-Prager Model

Yield function: $F = q - (d + H\bar{\epsilon}_p) - p \tan \beta = 0$ $q = \sqrt{\frac{3}{2}S:S}$, Mises equivalent stress $S = \sigma + \frac{1}{3}pI$, Deviatoric stress $p = -\frac{1}{3}trace(\sigma)$

cohesion of the material,

$$\tan\beta = 3\frac{(\sigma_c - \sigma_T)}{(\sigma_c + \sigma_T)}$$

 σ_c : Uniaxial compressive strength σ_t : Uniaxial tensile strength

Estimation of snow properties through mechanical tests

Mechanical tests

- Uniaxial tension and compression
- Uniaxial loading-unloading tests in tension and compression
- Snow type: Natural
- Snow density range: 100-400 Kg/m³
- Strain rate: > 1e-4 s⁻¹ (Moderate to high strain rates)

Estimation of snow elastic modulus

- Maximum tangent modulus through stress-strain curves
- Elastic modulus through loading unloading tests

Estimation of snow properties through mechanical tests

Estimation of snow failure strength (peak stress in stress-strain curves) in tension and compression

Power laws for snow elastic modulus and strengths (Through curve fitting of experimental data)

$$E, \sigma = a \left(\frac{\rho}{\rho_{ice}}\right)^{b}$$

	а	b	R ²
E-mod (MPa)	332.03	2.86	0.95
T-strength (kPa)	41.72	1.25	0.61
C-strength (kPa)	3844.85	3.83	0.98

Estimation of snow properties through mechanical tests

Estimation of Drucker-Prager parameters for snow

 Estimated Drucker-Prager parameters using density dependent power laws for snow strength

Other snow properties used for simulation

- Hardening Modulus: 1-10 MPa (assumed, no major influence for small damage initiation plastic strain)
- Associated flow
- **Damage initiation plastic strain:** 1e-6 (assumed, (for near brittle failure as observed in experiments))
- Fracture energy: 0.03-0.15 J/m² (linear variation with density, Experimental data)

Results: Variation of propagation length in top slab with density

Results: Variation of propagation length in top slab with thickness

- Propagation length increases with top slab thickness
- Trend of variation is similar to the one reported by Gaume et. al. 2015 in their DEM model

Top slab thickness: 0.6 m, FULL PROPAGATION

Top slab thickness: 0.4 m

Top slab thickness: 0.2 m

Results: Variation of propagation length in top slab with slope angle

No major influence of slope angle on propagation length in top slab is observed

Conclusions

- The proposed model for snow was used successfully used for modelling fracture of overlying slab in numerical Propagation saw test
- Propagation length was found to increase with top slab density and thickness whereas no major influence of slope angle is observed
- For snow with densities greater than 150 Kg/m³ fracture in the slab starts from the upper surface
- The modelling approach used seems promising and can be extended for snow slab failure modelling in multi layer snow cover with varying densities

Thank You