
Extreme variability of Tibetan thermal lithosphere
B. Xia 1,2*, I.M. Artemieva 3,4,5*, H. Thybo 5,6,7, S.L. Klemperer 3                              B. Xia: bingxia0127@gmail.com

1 State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China 2 Geology Section, IGN, University of Copenhagen, Copenhagen, Denmark. 3 Department of Geophysics, Stanford University, 397 Panama Mall, Stanford, CA 94305, USA 4 Section of Marine Dynamics, GEOMAR Helmholtz Center for Ocean Research, Wischhofstr. 1-3, Kiel 24148, Germany

5 State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, No. 388 Lumo Road, Wuhan 430074, China 6 Eurasia Institute of Earth Sciences, Istanbul Technical University, Mashlak, Istanbul, Turkey 7 Center for Earth Evolution and Dynamics, University of Oslo, Oslo, Norway.

We present a thermal model for lithospheric thickness in Tibet and 
adjacent regions based on the new thermal-isostasy method and 
our compilation of Moho depth based on published seismic 
models. We interpret the strong heterogeneity of lithosphere ther-
mal structure to be caused by lateral variations in the northern 
extent of the subducting Indian plate, the southward subduction of 
the Asian plate beneath central Tibet, and possible preservation of 
fragmented Tethyan paleo-slabs. Cratonic-type cold and thick litho-
sphere (200-240 km) with a predicted surface heat flow of 40-50 
mW/m2 typifies the Tarim craton, the NW Yangtze craton, and most 
of the Lhasa Block that is likely refrigerated by underthrusting 
Indian lithosphere. We identify a ‘North Tibet anomaly’ (at 84-92 
oE, 33-38 oN) with thin (<80 km) lithosphere and high surface heat 
flow (>80-100 mW/m2) in a region with anomalous seismic Sn and 
Pn. We interpret the anomaly as due to the removal of lithospheric 
mantle and asthenospheric upwelling at the junction of the Indian 
and Asian slabs with opposite subduction polarities. Other parts of 
Tibet typically have an intermediate lithosphere thickness of 
120-160 km and a surface heat flow of 45-60 mW/m2, with patchy 
anomalies in eastern Tibet. The heterogeneous thermal lithosphere 
beneath Tibet suggests an interplay of several mechanisms as the 
driver of the topographic uplift.
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Topography and simplified tectonics of Tibet and adjacent regions. 
Geological boundaries modified after Styron et al. (2010). Purple 
and yellow lines mark the sutures from closure of Paleo-Tethys and 
Neo-Tethys; black lines are strike-slip faults (bold if slip > 8 mm/-
year); thin red lines are normal and thrust faults. 

Lithosphere thermal observations 
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Lithosphere thermal observations based on previous studies. 
Colored circles – high-quality surface heat-flow measurements 
(Jiang et al., 2019). Red, green and blue lines – inferred thin, 
normal and thick lithosphere based on geophysical observations 
(numbers 1-14 refer to previous studies).

Crustal thickness

(a) Receiver functionsand seismic wide-angle reflection/refraction 
profiles. (b) Moho depth based on receiver function (RF) results. 
(c) Moho depth based on seismic wide-angle reflection/refraction 
profiles. (d) Difference in Moho depth between receiver function 
studies and wide-angle reflection/refraction studies. 

Heterogeneous thermal lithosphere Quality Control
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a) Lithosphere Thermal Thickness

b) Predicted Surface Heat Flow

(a) Lithosphere thermal thickness calculated by thermal isos-
tasy; (b) predicted surface heat flow overlain by measured 
values (colored dots); the color scales for predicted and mea-
sured heat flow are the same. Other figure elements as in Fig 
1b: color lines in (b, c) show the lithosphere thermal state 
based on previous studies (white, light and dark gray are for 
hot, warm and cold lithosphere, respectively); stars are xeno-
lith locations.
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c) Moho depth based on reflection/refraction results
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b) Moho depth based on receiver function results
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a) Data coverage by seismic studies 

d) Difference in Moho depth
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