

grwat is a comprehensive set of programming tools aimed at analysis of river hydrograph

grwat 0.0.1 Get started Reference Articles -

grwat

Welcome to grwwt, am R package for hydrograph separation and analysis based on un makes use of goographic data processing to spatially select temperature and precipi these data and join them to each element in water level series. High preformance for processing that separates water level series into ground, seasonal, than, and food of each discharge type are derived. Results are visualized in a form of high-quality re report generation.	itation data within the basin of each gauge, avera ortran/C++ computation is used for hydrograph discharge. Interannual and long-term characteristi
---	---

Installing

To use great on your mach . devtools package command-line development tools (Mindows and macOS users on) command-line development tools (windows an
grwat package itself
TeX distribution (only if you need PDF reporting.

Install devtools package

levtools is a great library that facilitates working with in-development packages not hosted on C is already installed on your machine):	RAN. You have to install it first (unle
install packages("deutools")	

What's inside

More than 25 functions to automate hydrograph separation, analyze and visualize inter-annual and long-term changes

gr_animate()	Animate discharge through years
gr_baseflow()	Extracts baseflow for discharge
gr_fill_gaps()	Fill missing water discharge data using linear interpolation
gr_get_params()	Get default separation parameters for selected region
gr_help_vars()	Get hydrograph parameters list
gr_join_interim()	Join ERA-INTERIM data to hydrological level series
gr_kable_tests()	Kable p-values table by coloring it using green-yellow-red palette
gr_map()	Map reanalysis and basin data
gr_plot_minmonth()	Plot histogram of minimum discharge month for two periods
gr_plot_periods()	Plot long-term changes of hydrograph variables for two periods
<pre>gr_plot_separation()</pre>	Plot hydrograph separation
gr_plot_ss()	Plot scale-space tree of hydrograph
gr_plot_tests()	Plot change year density
gr_plot_vars()	Plot interannual parameters
gr_proc_basins()	Join reanalysis data based on geographic location and time
gr_proc_gauge()	Process gauge directory
gr_read_interim()	Read ERA-INTERIM reanalysis NetCDF files with temperature and precipital
gr_read_sep()	Read file with hydrograph separation
gr_read_vars()	Read file with hydrograph variables
<pre>gr_report_basins()</pre>	Generate reports with detailed hydrograph analysis
gr_report_gauge()	Generate report for the specified gauge folder
gr_separate()	Separates river hydrograph
gr_set_params()	Change separation parameters through graphical interface
gr_ss()	Perform scale-space transform of hydrograph
gr_ss_tree()	Get scale-space tree data frame from Scale4C object
gr_summarize()	Calculate various summary stats for separated hydrograph
gr_test_vars()	Run various tests on interannual characteristics. Required number of observations for various tests: Pettitt > 0, Mann.Kendall > 2, Theil-Sen slop Student > 1,
st_buffer_geo()	Buffer sf objects in geographic coordinates through conic projection

http://tsamsonov.github.io/grwat

The study was supported by the Russian Science Foundation grant No. 19-77-10032

2007

40000

2007-04-25 - 2008-05-18

Aug Sep Oct

1000

750

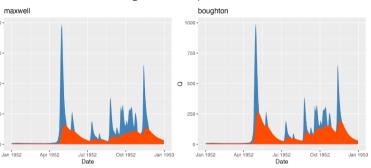
Ø 500-

250

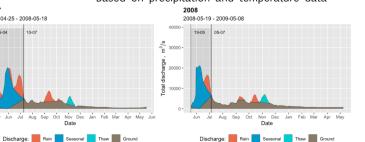
Comprehensive analysis and separation of river hydrograph using the grwat R package

Maria Kireeva^[b], Timophey Samsonov^[b], and Ekaterina Rets^[b]

¹Lomonosov Moscow State University, Land Hydrology, Moscow, Russian Federation (kireeva_mb@mail.ru)


²Lomonosov Moscow State University, Cartography and Geoinformatics, Moscow, Russian Federation (tsamsonov@geogr.msu.ru)

³Water Problems Institute, Russian Academy of Science (retska@mail.ru)


Fills gaps in observations based on gr fill gaps() threshold autocorrelation value

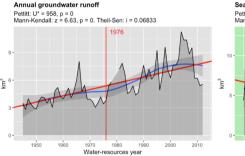
29		1946	13.5	-13.25	0.033	29		1946	13.5	-13.2	0.0
30	30	1946	13.3	-11.03	0.095	30	30	1946	13.3	-11.0	0.1
31		1946	13.3	-15.40	0.155	31		1946	13.3	-15.4	0.2
32		1946		-15.30	0.326	32		1946	13.2	-15.3	0.3
33		1946		-13.26	0.425	33		1946	13.1	-13.3	0.4
34		1946		-7.10	1.243	34		<u>19'5</u>	13.1	-7.1	1.2
35		1946		-2.42	1.246	35		1946	13.0	-2.4	1.2
36		1946		-1.93	1.159	36		1946	12.9	-1.9	1.2
37		1946	12.8	-5.13	0.956	37		1946	12.8	-5.1	1.0
38		1946	13.0	-27.26	0.405	38		1946	13.0	-27.3	0.4
39		1946	13.0	-37.62	0.153	39		1946	13.0	-37.6	0.2

Separates hydrograph into baseflow and quickflow gr baseflow() using numerous parameterized methods

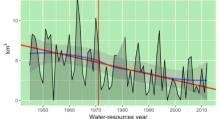
Separates discharge using the original method gr separate() based on precipitation and temperature data

gr summarize()

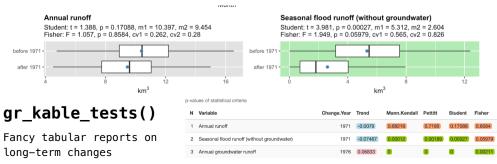
Aggregates hydrograph data by each water-resources year resulting in more than 50 useful variables


. . .

^					datepolend	polprod	≑ _{Qy} ≑	Qmax 🗘	datemax 🗘	Qygr ‡	Qmmsummer 🗘	Qmmwin 🗘	nommwin 🗘
1	1946	1946	1947	1946-04-11	1946-05-20	39 days	68.99302		1946-04-30	19.881982		8.6	
2	1947	1947	1948	1947-04-04	1947-05-24	50 days	83.35204	1610	1947-04-28	20.239717		8.3	6
3	1948	1948	1949	1948-04-05	1948-05-14	39 days	55.68692	943	1948-04-13	18.070650	11.0		8
4	1949	1949	1950	1949-04-07	1949-05-23	46 days	49.44258	1100	1949-05-01	9.927366	6.2	4.8	
5				1950-04-06	1950-05-08	32 days	47.37718		1950-04-22	16.549616	6.8		
5	1951	1951	1952	1951-03-27	1951-05-07	41 days	49.36477	694	1951-04-07	16.536378	6.9		
7				1952-04-16	1952-06-02	47 days	116.15257	991	1952-04-30	28.440327	16.8	15.0	
8	1953			1953-04-01	1953-05-06	35 days	97.55805	1070	1953-04-22	26.575056	15.8	11.2	
9				1954-04-15	1954-05-14	29 days	62.12916		1954-04-22	21.605693	11.6	12.2	
0	1955	1955	1956	1955-04-17	1955-06-09	53 days	95.38169	1240	1955-05-01	25.812738		8.5	
1	1956	1956	1957	1956-04-17	1956-06-04	48 days	84.59313	1040	1956-05-04	22.591212	18.3	15.4	
2	1957	1957	1958	1957-04-16	1957-05-15	29 days	103.96213	1430	1957-05-02	31.511612	15.8	16.7	


gr plot vars()

gr plot periods()


Visualizes interannual variable changes with Mann-Kendall, Pettitt and Theil-Sen tests

Seasonal flood runoff (with groundwater) Pettitt: U* = 598 n = 0.00128 Mann-Kendall: z = -3.797, p = 0.00015. Theil-Sen: i = -0.07591

Visualizes long-term changes of variables separated into two periods calculated by Pettitt test

