
LETTER • OPEN ACCESS

Subseasonal predictability of the North Atlantic Oscillation
To cite this article: John R Albers and Matthew Newman 2021 Environ. Res. Lett. 16 044024

 

View the article online for updates and enhancements.

This content was downloaded from IP address 67.164.173.223 on 25/03/2021 at 04:45

https://doi.org/10.1088/1748-9326/abe781


Environ. Res. Lett. 16 (2021) 044024 https://doi.org/10.1088/1748-9326/abe781

OPEN ACCESS

RECEIVED

29 October 2020

REVISED

9 February 2021

ACCEPTED FOR PUBLICATION

18 February 2021

PUBLISHED

23 March 2021

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

LETTER

Subseasonal predictability of the North Atlantic Oscillation
John R Albers1,2,∗ and Matthew Newman1,2
1 Cooperative Institute for Research in the Environmental Sciences, University of Colorado Boulder, Boulder, CO, United States of
America

2 NOAA Physical Sciences Laboratory, Boulder, CO, United States of America
∗

Author to whom any correspondence should be addressed.

E-mail: john.albers@noaa.gov

Keywords:North Atlantic oscillation, subseasonal, predictability, stratosphere, northern annular mode

Supplementary material for this article is available online

Abstract
Skillfully predicting the North Atlantic Oscillation (NAO), and the closely related northern annular
mode (NAM), on ‘subseasonal’ (weeks to less than a season) timescales is a high priority for
operational forecasting centers, because of the NAO’s association with high-impact weather events,
particularly during winter. Unfortunately, the relatively fast, weather-related processes dominating
total NAO variability are unpredictable beyond about two weeks. On longer timescales, the tropical
troposphere and the stratosphere provide some predictability, but they contribute relatively little to
total NAO variance. Moreover, subseasonal forecasts are only sporadically skillful, suggesting the
practical need to identify the fewer potentially predictable events at the time of forecast. Here we
construct an observationally based linear inverse model (LIM) that predicts when, and diagnoses
why, subseasonal NAO forecasts will be most skillful. We use the LIM to identify those dynamical
modes that, despite capturing only a fraction of overall NAO variability, are largely responsible for
extended-range NAO skill. Predictable NAO events stem from the linear superposition of these
modes, which represent joint tropical sea-surface temperature-lower stratosphere variability
plus a single mode capturing downward propagation from the upper stratosphere. Our
method has broad applicability because both the LIM and the state-of-the-art European
Centre for Medium-Range Weather Forecasts Integrated Forecast System (IFS) have higher
(and comparable) skill for the same set of predicted high skill forecast events, suggesting that the
low-dimensional predictable subspace identified by the LIM is relevant to real-world subseasonal
NAO predictions.

1. Introduction

The North Atlantic Oscillation (NAO) represents a
north-south ‘see-sawing’ of the Atlantic jet stream,
with the positive phase bringing increased precipit-
ation and above average temperatures to northern
Europe and decreased storminess to southern Europe
and eastern North America, and vice versa for the
negative phase (see Hurrell et al 2003, Kenyon and
Hegerl 2008, 2010, Sillmann et al 2011, Luo et al
2016, Smith et al 2016 and references therein for
details of high impact NAO wintertime weather).
NAO forecast skill has been realized for daily weather
forecasts (<14 d) (Ferranti et al 2015, Domeisen
et al 2018, Toth and Buizza 2019), as well as for

seasonal climate forecasts (Baldwin et al 2003, Riddle
et al 2013, Sigmond et al 2013, Scaife et al 2014,
Stockdale et al 2015, Athanasiadis et al 2017) where
slowly evolving boundary conditions such as El Niño-
Southern Oscillation (ENSO) (Capotondi et al 2015)
govern atmospheric variability. However, on the
intermediate subseasonal time scales lying within
the ‘weather-climate prediction gap’, where neither
weather nor boundary forcing strongly determine
predictability (e.g. Von Neumann 1960, Mariotti et al
2018), NAO forecast skill has remained stubbornly
low on average. This has spurred efforts to identify
‘forecasts of opportunity’ where skill is expected to
be relatively high (Lang et al 2020, Mariotti et al
2020) due to physical processes driving climate signals
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large enough to be predictable in the face of unpre-
dictable weather noise (Albers and Newman 2019).
For example, in the landmark paper by Baldwin and
Dunkerton (2001) (hereafter, BD2001), stratospheric
northern annular mode (NAM) anomalies were pro-
posed as long-range predictors (or ‘stratospheric har-
bingers’) for anomalous tropospheric NAM/NAO
events.

NAO variability during winter is driven by
numerous physical mechanisms including remote
tropical forcing by the Madden-Julian Oscillation
(MJO) (Ferranti et al 2018, Tseng et al 2018, Mayer
and Barnes 2020) and ENSO (Ayarzagüena et al
2018, King et al 2018, Nie et al 2020), sudden stra-
tospheric warmings (SSW) (Sigmond et al 2013,
Tripathi et al 2015, Domeisen et al 2020), and eddy-
mean dynamics of the zonal index (Gerber and Vallis
2007, Hitchcock and Simpson 2016). These mechan-
isms may yield similar NAO-like patterns, but each
operates over different, overlapping timescale ranges.
So, while the combined effects of these dynamical
processes may result in above average NAO forecast
skill, it is difficult to extract their individual contri-
butions to subseasonal NAO predictions (Butler et al
2014, Polvani et al 2017, Domeisen et al 2019).

Patterns of atmosphere-ocean variability arising
frommultiple physical processes unfolding across dif-
ferent timescale rangesmay be a consequence of ‘non-
normal’ dynamical systems (Farrell 1988, Borges and
Hartmann 1992, Farrell and Ioannou 1996, Newman
et al 2003, 2009, Mitas and Robinson 2005, Coy and
Reynolds 2014, Breeden et al 2020, Henderson et al
2020). These systems have dynamical ‘modes’ that
may, at times, have a fairly similar spatial appear-
ance, yet generally have fairly different temporal evol-
utions. In the most basic sense, this means that
transient anomaly growth of a common geographic
pattern (e.g. the NAO) can arise when several of the
dynamical modes projecting on this pattern initially
destructively interfere but eventually, as they evolve
differently, constructively interfere.

Here we show that the nonnormal dynamics of
observed NAO subseasonal variability can be well
modeled by a type of empirical-dynamical model
called a linear inverse model (LIM) (Penland and
Sardeshmukh 1995, Albers and Newman 2019). In
particular, we show that the LIM predicts when sub-
seasonal NAO forecasts will be most skillful. In addi-
tion, using a ‘nonnormal filter’ derived from the LIM,
we find that while most NAO variability is associated
with predominantly tropospheric dynamical modes
whose predictability is limited to about two weeks,
skillful subseasonal NAO forecasts are due to a hand-
ful of dynamical modes dominated by joint tropical
sea-surface temperature-lower stratosphere variabil-
ity, plus one mode representing downward propaga-
tion from the upper stratosphere.

2. Methods

2.1. The LIM and its nonnormal eigenspaces
2.1.1. Model description
In a LIM, the chaotic evolution of a ‘coarse-grained’
climate anomaly is approximated by the sum of
slowly evolving, predictable linear dynamics and rap-
idly evolving, unpredictable white noise (Hasselmann
1976, Penland and Matrosova 1994; see also Penland
1996, Just et al 2001). The LIM is written as:

dx

dt
= Lx+Bη (1)

where the matrix L is constructed from covari-
ances of the anomalous climate state vector x and
Bη is an observationally constrained white noise
forcing vector, whose spatial structure matrix B
is determined from a balance condition derived
from (1) (Penland and Sardeshmukh 1995; see
Albers and Newman 2019 and the supplement for
details of our LIM’s construction (available online at
stacks.iop.org/ERL/16/044024/mmedia)).

As a dynamical model, the LIM can be run either
as a forecast model or as a climate model: To make
predictions, the LIM’s infinite-member ensemble-
mean forecast at lead τ is x̂(t+ τ) = exp [Lτ ]x(t)
(Newman et al 2003); to generate lengthy climate sim-
ulations, equation (1) is integrated forwards in time as
in Penland andMatrosova (1994) (see supplement for
details of our stochastic integration). While in prin-
ciple x represents the entire climate anomaly, in prac-
tice it contains amore limited set of variables; here, we
use weekly averaged anomalous mean-sea level pres-
sure (MSLP), tropospheric stream function and geo-
potential height, stratospheric stream function, trop-
ical diabatic heating, and tropical SSTs, where the data
is from the Japanese 55 year Reanalysis (Kobayashi
et al 2015) for extended boreal winter (December–
March, 1979–2017). Other variables and/or levels
may then be obtained via multivariate linear regres-
sion onto x (see section 2.2).

2.1.2. LIM nonnormal filter
We used the LIM to construct a ‘nonnormal filter’
(Penland and Matrosova 2006) that can be applied
to LIM output or JRA-55 observations projected onto
the LIM state vector. The dynamics within our fore-
cast operator L may be diagnosed through the dif-
ferential evolution of its eigenmodes (Penland 1989,
Penland and Matrosova 1994, Von Storch et al 1995);
generally, these are nonnormal eigenmodes that are
not orthogonal to each other (Strang 2006). The fil-
ter separates the small subset of eigenmodes with sub-
stantial stratospheric and tropical sea-surface tem-
perature (SST) components, which we find are key
to the predictable subseasonal NAO signal, from
the many remaining eigenmodes representing tropo-
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spheric internal variability These two sets of eigen-
modes, or ‘subspaces’, are defined as follows (see
supplement for details): (a) the ‘internal’ subspace
has eigenmodes with e-folding (decay) times ranging
continuously from 1 to 22 d, along with zero SST
amplitude and relatively small stratospheric amp-
litudes; (b) the ‘stratosphere-SST’ subspace has far
fewer eigenmodes, all with longer e-folding times
(>32 d) and low frequencies, all with pronounced
stratospheric amplitudes, and all but one with SST
components. Note that, similar to earlier studies
(Newman et al 2009, Henderson et al 2020), the
internal subspace includes an MJO-like eigenmode.

The complete set of eigenmodes spans x, so any
anomaly (or composite of anomalies) can be repres-
ented as the sum over all eigenmodes. However, the
nonnormalitymeans that quadratic quantities such as
power and anomaly correlation are not strictly addit-
ive; for example, total variance is generally less than
the sum of the variances of each eigenmode (Farrell
and Ioannou 1996).

2.1.3. Signal-to-noise calculation
High skill NAO forecasts are identified from the LIM’s
‘expected skill’, derived from the signal-to-noise ratio
of each infinite-member ensemble-mean LIM fore-
cast (Sardeshmukh et al 2000, Newman et al 2003,
Albers andNewman 2019). The expected skill for lead
τ at forecast initialization time t is

ρ∞ (t;τ) =
S2 (t;τ)

[(S2 (t;τ)+ 1)S2 (t;τ)]1/2
(2)

where the squared forecast signal-to-noise ratio,
S2 (t;τ) , is determined in the LIM from the state-
dependent forecast signal x̂(t+ τ) and the expec-
ted state-independent, forecast lead-dependent error
variance (Newman et al 2003). Because equation (2)
is defined for a ‘perfect model’ infinite member
ensemble forecast (Sardeshmukh et al 2000), it
provides a theoretical upper bound on mean predict-
ability as a function of forecast lead time.

2.2. Observed and LIMNAM composites
In this paper, we compare composites over observed
NAM events to the corresponding composites in the
long LIM climate run. The NAM index is calculated
individually at each pressure level as a polar cap aver-
age (65◦–90◦ N) of geopotential height and then
normalized by the level-specific standard deviation
(Cohen et al 2002, Baldwin and Thompson 2009).
Additionally, NAO time series are created by project-
ingMSLP LIM and IFS forecasts, and JRA-55 verifica-
tions, onto the first EOF of JRA-55MSLP (30◦–85◦ N
and 80◦W–40◦ E) for DJF 1979–2017.

Observed NAM events are identified when the
NAM index exceeds 1.57 standard deviations (STDs)
at 10 hPa. This threshold roughly matches the
event/year frequency (0.43 events per year) for negat-
ive NAM (weak vortex) events used in BD2001, which

provided a reasonable balance between event sample
size and event strength; this choice does not qualit-
atively impact our results (cf figure 1 to figures S2
and S3). For the LIM climate runs, we choose STD
thresholds that closely matched the events/year fre-
quency of the observed NAM composites; for 10 and
300 hPa levels, this equated to 1.4 and 1.6 STDs,
respectively.

The LIM state vector, x, includes a limited set
of variables on a limited set of pressure levels. Thus,
to construct multilevel (1000–1 hPa) NAM compos-
ites, which require geopotential height on levels not
explicitly included in x, we constructed a series of
ridge regression models (Hastie et al 2015) that takes
as input any time series of LIM model output (or
JRA-55 observations projected onto the LIM state
vector basis) and outputs the first 25 EOFs of geo-
potential height (explaining roughly 93% and 98%
of the geopotential height variance for tropospheric
and stratospheric levels, respectively) on a 30◦–90◦

N five-degree grid on 16 pressure levels (units of
hPa): (1, 5, 10, 30, 50, 70, 100:100:1000). The good-
ness of fit between the observed NAM time series
and the regression model-based NAM time series is
very good, with the correlation coefficients varying
between 0.92 and 0.94, depending on the pressure
level, and negligible mean-square error (see supple-
ment S4 and figure S4 for details).

Significant differences between the observed
NAM anomalies and those from the LIM climate
run are calculated via 10 000-member Monte Carlo
simulations (based on resampling of the LIM climate
run where positive and negative NAM polarities are
calculated separately). Differences are deemed to be
significant if an observed NAM values lies outside the
99th percentile of the Monte Carlo distribution at
each lag and pressure level; these values are denoted
by light stippling in figure 1 (see supplement for
details of the Monte Carlo simulations).

3. Results

BD2001 hypothesized that stratospheric NAManom-
alies may lead to enhanced NAO skill. Thus, we begin
by repeating the BD2001 ‘stratospheric-based’ (defin-
ing onset at 10 hPa) NAM composite analysis using
the JRA-55 dataset (figures 1(a) and (d), respect-
ively). Applying the nonnormal filter, we find that
nearly all of the observed NAM composite anom-
aly is contained within the stratosphere-SST subspace
for both negative (cf figures 1(b) and (c)) and pos-
itive (cf figures 1(e) and (f)) events. There are two
important exceptions: before onset (negative lags),
there are notable upper stratospheric internal sub-
space anomalies consistent with the ‘vortex precon-
ditioning’ often observed prior to SSWs (McIntyre
1982, Albers and Birner 2014), and after onset (posit-
ive lags), significant internal subspace anomalies exist
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Figure 1. Stratosphere-based negative NAM composite (17 events) and positive NAM composite (13 events) for 1979–2017, and
their eigenmode subspace contributions. (a) Observed negative NAM composite. (b), (c) Stratosphere-SST subspace and internal
subspace contributions, respectively, to observed negative NAM composite. (d)–(f) Same as (a)–(c) except for positive NAM
events. Note that in each row, the two rightmost panels sum to the leftmost panel. Contour values larger than±0.6 are
purple/red, with white lines denoting values beginning at±1 in intervals of 0.5; the thin vertical and horizontal lines denote
lag-zero and the nominal tropopause, respectively. Regions where the composites lie outside the 99th percentile of the
stochastically forced LIM dynamical system, based on 10 000 Monte Carlo resamples of NAM composites from the LIM climate
run (see figure 2), are indicated by semi-transparent dots. Units in all panels are standard deviations. See supplement for Monte
Carlo calculation details.

within the troposphere and lower stratosphere, dis-
cussed below.

To explore the dynamics of downward propagat-
ing NAM anomalies, we constructed NAM compos-
ites from the sum of all negative and positive NAM
events drawn from the LIM climate model run (3097
total events in roughly equal proportions, which can
be summedbecause of the linearity of the LIM). These
composites replicate the key features of observed
NAM events (cf figures 2(a) and 1(a), (d)), includ-
ing the differences between the stratosphere-SST (cf
figures 2(b) and 1(b), (e)) and internal (cf figures 2(c)
and 1(c), (f)) subspace composites, suggesting that
these are not artifacts imposed by the filtering tech-
nique. The LIM composites are much smoother than
the observed NAM composites, which exhibit the
familiar ‘dripping paint’ features, mostly due to the
much larger sample size the LIM composite repres-
ents; composites of smaller LIM subsamples also have
‘drips’ (not shown).

There are two key features of the observed com-
posite that the LIM climate run does not reproduce
(indicated by stippling in figure 1, based on Monte
Carlo-based resampling of the LIM climate run, see
supplement). First, the upper stratospheric onset for
the observed negative NAM composite is more ‘sud-
den’, with nearly vertical anomaly tilt and slightly
more intense peak amplitude (cf figures 1(a) and
2(a)). This is also evident in the stratosphere-SST

subspace alone (cf figures 1(b) and 2(b)). The LIM’s
inability to simulate these details could be due to non-
linear SSWs (Birner and Albers 2017) occurring dur-
ing negative but not positive events (Gerber andMar-
tineau 2018). Alternatively, such nonlinear behavior
(i.e. asymmetry between negative and positive NAM
events) could be consistent with a LIM whose noise
amplitude matrix B includes a linear dependence
upon the state (i.e. ‘correlated additive-multiplicative
noise’, Sardeshmukh and Penland 2015, Martinez-
Villalobos et al 2019), yielding linear determin-
istic dynamics but non-Gaussian distributions. The
second key difference is the internal subspace anom-
aly centered just above the tropopause for the first
10 d after lag 0 (figures 1(c) and (f)), which appears to
strengthen the drips within the downward propagat-
ing stratosphere-SST subspace anomalies. Its loca-
tion and timing suggest some combination of eddy
feedbacks (Song and Robinson 2004, Hitchcock and
Simpson 2014, 2016) and lower stratospheric isen-
tropicmixing (de la Cámara et al 2018), both of which
may be nonlinear even on the coarse-grained weekly
time scale.

Within the stratosphere-SST subspace, there is
one eigenmode of particular interest that we call the
‘downward-propagating’ NAM eigenmode. Unique
among the subspace’s eigenmodes, it has almost all
of its standardized amplitude in the stratospheric
portion of the LIM state vector (nearly 80%) and
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Figure 2. Stratosphere-based and troposphere-based NAM composites determined from the LIM climate run.
(a) Stratosphere-based NAM composite (3097 events) from the LIM climate run, filtered into contributions from (b) the
stratosphere-SST subspace and (c) the internal subspace. (d)–(f)-Same as (a)–(c), except using a troposphere-based NAM
composite (3107 events). As in figure 1, contour values larger than±0.6 are purple/red, with white lines denoting values
beginning at±1 in intervals of 0.5; the thin vertical and horizontal lines denote lag-zero and the nominal tropopause,
respectively. Units in all panels are standard deviations.

no amplitude in either tropical SSTs or diabatic
heating (see figure S1 for additional details). Not-
ably, the downward propagating anomaly seen in
the stratosphere-SST subspace portion of the LIM
composite (figure 2(b)) is almost entirely due to
this single downward-propagating eigenmode alone
(figures 3(a) and (b)).

Are tropical SSTs and heating therefore unim-
portant for surface-basedNAM/NAO variability over-
all? Certainly not. To see this, we constructed a
‘troposphere-based’ NAM composite whose onset is
located at 300 hPa (figures 2(d)–(f)) rather than at
10 hPa (figures 2(a)–(c)). The stratosphere-SST sub-
space still explains most of this composite, and all
of it beyond +15 d (figures 2(e) and (f)). However,
the downward-propagating stratospheric eigenmode
is relatively weaker (figure 3(c)), while the remaining
stratosphere-SST eigenmodes, predominantly tro-
pospheric in character (figure 3(d)), dominate the
composite. Consequently, the stratosphere-based and
troposphere-basedNAMevents have distinctly differ-
ent surface patterns, with the former having a pre-
dominantly Atlantic signature (figure 4(a)) (Butler
et al 2014, Hitchcock and Simpson 2014), and the lat-
ter having a more annular appearance (figure 4(b))
(Thompson and Wallace 2000). These differences
result from the downward-propagating eigenmode

having near zero tropical characteristics (figure 4(c))
and therefore no Pacific basin response, while the
troposphere-based NAM composite is dominated
by stratosphere-SST eigenmodes with non-canonical
ENSO-like (Capotondi et al 2015) SST anomalies
(figure 4(d)) and a western tropical Pacific heat-
ing anomaly that decays prior to onset (not shown)
(Newman and Sardeshmukh 2008).

To gauge the importance of stratosphere-SST sub-
space dynamics to overall variability, we compare
the NAO time series to its internal and stratosphere-
SST subspace components (figure 5). While the
internal subspace NAO time series is well correl-
ated with the total NAO (0.75, figure 5(a)), the
stratosphere-SST subspace NAO time series is not
(0.37, figure 5(b)); results are similar when the time
series are smoothed with an additional lowpass tem-
poral filter (not shown). Also, while the total and
internal subspace time series have nearly identical
power spectra, the stratosphere-SST subspace also
has substantial power, especially at lower frequencies
(figure 5(c)). In fact, the sum of the subspace vari-
ances is 146% of the total variance. This is a measure
of the importance of nonnormality to NAO amplific-
ation, since some of this internal subspace variability
acts to cover up (destructively interfere with) slowly
evolving stratosphere-SST subspace anomalies, with
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Figure 3. Contribution of the ‘downward-propagating’ NAM eigenmode and the remaining stratosphere-SST eigenmodes
to the total stratosphere-SST subspace NAM composites. Stratosphere-based NAM composite contributions from the
(a) ‘downward-propagating’ NAM eigenmode only and (b) the remaining stratosphere-SST subspace eigenmodes; note that these
two panels sum to figure 2(b). Troposphere-based NAM composite contributions from the (c) ‘downward-propagating’ NAM
eigenmode only and (d) the remaining stratosphere-SST subspace eigenmodes; note that these two panels sum to figure 2(f). As
in figure 1, contour values larger than±0.6 are purple/red, with white lines denoting values beginning at±1 in intervals of 0.5;
the thin vertical and horizontal lines denote lag-zero and the nominal tropopause, respectively. The ‘downward-propagating’
NAM eigenmode is denoted by the star markers in figures S1(a) and (b), while the remaining stratosphere-SST eigenmodes are
the remaining eigenmodes within the blue shaded region of the total stratosphere-SST subspace in figure S1(b). Units in all panels
are standard deviations.

total anomaly growth occurring as the internal sub-
space anomalies subsequently decay or evolve away
(Farrell and Ioannou 1996).

Finally, we quantify how the two subspaces con-
tribute to enhanced subseasonal forecast skill by first
identifying higher skill forecasts based on the LIM’s
expected skill (section 2.1.3, equation (2); see also
figure S5), calculated separately for each forecast day
and lead. For both the LIM and IFS (figure 6(a)),
NAO forecast skill for leads of 3–4 weeks averages
about 0.5–0.6 for the 15% of all hindcasts expected
by the LIM to have highest skill, which is significantly
greater than the skill of the remaining 85%. Next, we
created two additional sets of LIM hindcasts where

the forecast initial conditions were filtered to include
either the internal (e.g. green line in figure 5(a)) or
the stratosphere-SST (e.g. blue line in figure 5(b))
subspace components. While the internal subspace
provides the greater contribution to high skill fore-
casts at short leads (figure 6(b)), by leads of three
weeks nearly all of the forecast skill is found within
the stratosphere-SST subspace alone.

4. Discussion

We find that skillful subseasonal NAO forecasts arise
due to a relatively small eigenmode subspace dom-
inated by stratospheric and tropical SST-related
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Figure 4.MSLP and tropical SST anomalies associated with the stratosphere-based and troposphere-based NAM composite from
the LIM climate run. (a), (b) MSLP anomalies for the stratosphere-based and troposphere-based, respectively, NAM composites
from the LIM climate run, averaged over the 40 d after NAM event onset. (c), (d) Tropical SST anomalies for the
stratosphere-based and troposphere-based, respectively, NAM composites from the LIM climate run, averaged over all lags. Units
in all panels are normalized by the domain averaged root mean square amplitude of the respective variable (unitless).

Figure 5. NAO time series and power spectrum. (a), (b) Time series of NAO index for unfiltered JRA-55 data (black line in both
panels), overlaid with the same time series filtered to only include variance from the internal (green) or stratosphere-SST (blue)
subspaces, respectively. (c) Power spectra of the NAO index for unfiltered JRA-55 data and for the same data filtered to include
only variance determined from the internal (green) or stratosphere-SST (blue) subspaces; note that the truncated
frequency/period that is plotted reflects the DJFM time window used for the calculation. Also, since the subspaces are not
orthogonal, the variances are not additive (see section 2.1.2 for details).

processes (figure 6(b)). However, overall NAO
variability is dominated by the internal subspace
(figure 5), which is largely unpredictable beyond
two weeks (figure 6(b)). Identifying higher skill
subseasonal forecasts, therefore, requires predicting
when stratosphere-SST subspace anomalies are large
relative to initial internal subspace ‘noise’, which the
LIM’s signal-to-noise ratio is able to do (figure 6).
Indeed, its identification of high skill NAO forecasts
(skill >0.6 for 15% of all weeks 3 and 4 forecasts) not-
ably improves upon existing methods of identifying
conditional skill. For example, prior knowledge of

the MJO can boost IFS NAO forecast skill above 0.5
only for forecast leads a little past two weeks (Ferranti
et al 2018). Conditioning NAO forecasts on SSWs
(Tripathi et al 2015) yields skill above 0.5 through
forecast week 3, but only for a smaller fraction of all
DJF forecasts (∼5%).

Even though the predictable portion of the sub-
seasonal NAO lies primarily within the stratosphere-
SST subspace, quantifying its potential predictab-
ility still requires understanding the dynamics of
the internal subspace, whose interference with the
stratosphere-SST signal is critical to predictable
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Figure 6. Impact of stratosphere-SST and internal subspaces on NAO predictability. (a) NAO hindcast skill for the IFS and LIM
for the upper 15% of expected skill hindcasts and remaining 85% of lower expected skill hindcasts; 95th percentile bootstrap
confidence intervals are shown as transparent shading. (b) High expected skill LIM NAO hindcasts (same as in panel (a)), but
with skill from hindcasts given initial conditions filtered to only include the stratosphere-SST (blue, see figure 5(b)) or internal
(green, see figure 5(a)) subspace portions of the LIM state vector; 95th percentile bootstrap confidence intervals are shown as
transparent shading. NAO hindcast skill from the LIM and IFS is calculated by linear correlation between each model’s predicted
time series and the JRA-55 verification time series. Hindcasts include initialization dates on or after 1 December that also have
verification dates on or before 15 March and are sampled for the common twice-weekly dates available for the IFS, covering the
years 1997–2016. LIM hindcasts are ten-fold cross-validated (as in Albers and Newman 2019; see supplement for details). IFS
hindcasts are from model version CY43R1/R3, operational in 2017, obtained from the Subseasonal-to-Seasonal Prediction Project
database (Vitart et al 2017). IFS anomalies are computed by removing the lead dependent and model specific climatologies, which
also serves as a mean bias correction. In identical fashion to the LIM hindcasts, the IFS hindcasts are computed as 7 d running
mean anomalies and interpolated to an area-averaged five-degree grid. Confidence intervals for LIM and IFS hindcasts are
calculated via bootstrapping (see supplement for details).

anomaly growth. Similarly, our focus on identifying
the predictable NAO signal should not obscure the
need to diagnose the unpredictable noise, which is
also important to correctly estimating the signal-to-
noise ratio (Scaife and Smith 2018, Strommen 2020)
and which the internal subspace must dominate,
given its importance to the overall variance. Note that
our approach is potentially relevant to understanding
the predictability of other modes of variability that
may also result from nonnormal dynamics, including
the Pacific–North America pattern (Henderson et al
2020) and the Pacific Decadal Oscillation (Newman
et al 2016).

Within the stratosphere-SST subspace, we find
two distinct types of dynamical modes: a single
‘downward-propagating’ stratospheric eigenmode,
which has no tropical SST component and primarily
an Atlantic surface signature, and a set of eigenmodes
with joint stratospheric and SST components and
joint Pacific-Atlantic surface signatures. It is notable
that the downward-propagating eigenmode appears
to account for nearly all of the NAM/NAO-related
variability first identified by BD2001. The downward-
propagating eigenmode itself likely represents sev-
eral systematically co-evolving physical processes.
For example, its stratospheric portion is consistent
with the polar night jet oscillation (PJO) (Kuroda
and Kodera 2004, Kohma et al 2010). However, the

PJO is unlikely to extend deeply into the tropo-
sphere (Hitchcock and Shepherd 2013, Hitchcock
et al 2013), suggesting that the tropospheric portion
of this eigenmode is related to nonlinear eddy feed-
back processes, which both previous LIMs (Winkler
et al 2001, Newman et al 2003) and comprehens-
ive climate model studies (Hitchcock and Simpson
2014, 2016) have suggested may be effectively linear
for suitable time-averaging windows. While disen-
tangling the physical processes responsible for the
other stratosphere-SST eigenmodes requires future
study, these eigenmodes are relevant to the current
debate regarding the relative importance of tropo-
spheric versus stratospheric ENSO teleconnections
(Ineson and Scaife 2009, Butler et al 2014, Richter
et al 2015, Polvani et al 2017, Domeisen et al 2019,
Afargan-Gerstman and Domeisen 2020).

Even if weekly averaged downward-propagating
NAM events entirely resulted from effectively lin-
ear dynamics, the consequences of nonlinearity on
shorter (e.g. daily) time scale NAM predictability
could likely still be quite large. For example, like
dynamic forecast models (Kim and Flatau 2010), the
LIM is unable to predict most SSWs more than a
week in advance. However, once the LIM is initial-
ized with the SSW, its 4 week lead forecasts often
show enhanced skill for many consecutive forecast
cycles. That is, the fundamentally nonlinear ‘sudden’
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initiation of SSWs may not be predictable on sub-
seasonal forecast leads, but once the SSW has begun,
the subsequent downward propagating NAM anom-
aly evolves with predictably linear dynamics.
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