

Seasonal and annual dynamics of frozen ground at a mountain permafrost site in the Italian Alps detected by spectral induced polarization

Theresa Maierhofer^{1,2}, Jonas K. Limbrock⁴, Timea Katona¹, Elisabetta Drigo³, Christin Hilbich², Umberto Morra Di Cella³, Andreas Kemna⁴, Christian Hauck², Adrian Flores-Orozco¹

¹ Department of Geodesy and Geoinformation, TU-Wien, Austria

² Department of Geosciences, University of Fribourg, Switzerland

³ ARPA (Agenzia Regionale per la Protezione dell'Ambiente), Aosta valley, Italy

⁴ Institute of Geosciences, Geophysics Section, University of Bonn, Germany

- Climate change permafrost degradation → monitoring of the ice content has become an essential task also in the European Alps
 - Borehole temperatures (only point information)

bjective

- Geophysical measurements: Electrical Resistivity Tomography (ERT), Refraction Seismic Tomography (RST) – standard measurement techniques in permafrost
- Additional information is needed → a few recent studies address the polarization response of soils and rocks under freezing conditions (Grimm and Stillman, 2015; Doetsch et al., 2015; Wu et al., 2017; Duvillard et al., 2018, Duvillard et al., 2020), Coperey et al., 2019 extended the Stern layer model for freezing conditions and Auty and Cole, 1952 found that ice exhibits a relaxation behaviour at higher frequencies (1 kHz 45 kHz)
- Aim of our study:

1111,

- To investigate the in situ frequency dependence of the induced polarization response for a representative permafrost site in the Italian Alps
- To gain information about the seasonal and annual changes of the frequency dependence of the complex resistivity covering a 1.5-year monitoring period
- To validate field data with borehole information and SIP laboratory analysis on rock samples

voltage

11/1

Induced Polarization

In Frequency Domain:

- An alternating current is injected at low frequencies (commonly below 1 kHz)
- DATA: In subsurface materials we observe a phase-shift
 (φ) between the injected current and measured voltage
- RESULTS: Complex electrical resistivity/conductivity expressed in terms of the real and imaginary components or by its magnitude (ratio voltage/current) and phase (shift between voltage/current)
 - Real part: Conduction mechanisms
 - Imaginary part: Polarization processes

$$\rho^* = \rho' + i\rho'' = \log |\rho| + i\phi$$

DAS-1 (TDIP and FDIP measurements at frequencies between 0.01-225 Hz)

Spectral Induced Polarization

- Repetition of the measurement at different frequencies (0.01-40 000 Hz)
- To gain information about the frequency-dependence of the electrical properties (resistivity and IP)
 - Fast polarization effects e.g., small grains take place at high frequencies (small pulse lengths)
 - Slow polarization effects e.g., big grains take place at low frequencies (high pulse lengths)

Mountain permafrost - Thermal regime of permafrost

Annual maximum (summer) and minimum (winter) ground temperature during the year

111/1

Active layer: seasonally freezing and thawing surface layer

MAGST: Mean annual ground surface temperature at the depth of zero annual amplitude

- Permafrost or permanently frozen ground defined as soil or rock that remains beneath 0°C for at least 2 years
- Mountain permafrost typically occurs in high mountain environments in various geomorphological landforms under variable geological climatic and topographic conditions

Permafrost sites

 SIP data were collected at various permafrost sites in the Swiss, Austrian, Italian and German Alps, Cervinia (Italy) – SIP monitoring site

Permafrost site characteristics

 \rightarrow We chose this site as our SIP monitoring site

- Cime Bianche monitoring site
- Located in the Western Alps
- Altitude: 3100 ma.s.l.
- Homogeneous bedrock lithology (micaschists and calcschists)
- Cover of coarse-debris deposits (few centimeters to a couple of meters)
- ALT of about 5m

Measurement setup & data-error

10

SIP monitoring setting:

- measurement device: DAS-1, frequency range: 0.1-225 Hz
- 64 electrodes, 3m spacing, coaxial cables
- Dipole Dipole (normal reciprocal), Multiple Gradient

blocks

Challenges of collecting reliable SIP data at higher frequencies

• Challenges SIP: polarization of the electrodes, anthropogenic structures (high metal content), electromagnetic coupling (cross-talking with the cables, induction effects in the ground)

• Identification and quantification of errors in the data

Measurement setup & data-error

Different cable setups

Separated cables

111/3/

١

Coaxial cables

Validation: borehole temperatures 🗢 🛱 🗖

Deep borehole

111/1

First inspection of the IP data - challenges

- High contact resistances in winter leading to low current injections
- Need for electrode configurations with high signal strength relative to noise
 → Multiple Gradient configuration

Data processing

111/1

١

Data sets after filtering of the data

11/1/1

1

- Higher phase values at depth than at the surface in summer (active layer/permafrost)
- Highest resistivity and polarization for winter months (Jan, Feb) than for summer months
- Active layer deepening from July 2020 to September 2020, the phase shows higher values at depth for July than for September
- Higher phase values for Oct 2020 compared to Oct 2019, water content and borehole temperatures lower in Oct 2020 than in Oct 2019 18

→ Comparison SIP imaging results at 1 Hz for October 2019 and October 2020

111,

IP imaging results – 1 year comparison

- Higher phase values in Oct 2020 compared to Oct 2019
- Higher resistivity values in the active layer in Oct 2020 compared to Oct 2019
- Water content and borehole temperatures lower in Oct 2020 than in Oct 2019

IP/temperature relations

IP imaging results – 1.5 years

111,

Examplary resistivity/phase – temperature relations for 1 Hz at different depths extracted from SIP inversion results at close proximity to the borehole for all measurement dates

- At freezing temperatures (below 0° C), the resistivity and phase values are higher with a wider range observed for the phase values compared to phase values at positive temperatures
- The phase is more dependent on the different compositions at depth, we observe slight changes with time at each depth, so it is sensitive to T/ice, T-rho relation clearer than T-phase relation .

IP imaging results – 1.5 years

IP/water content relations

Relation between resistivity/phase and water content for 1 Hz in a depth of 0.2 meter for the whole profile during a monitoring period of 1.5 years

Findings

111,

- At freezing temperatures (below 0° C), the resistivity and phase values are higher with a wider range observed for the phase values compared to phase values at positive temperatures
- A combination of low water content (6%) and low temperatures (-4°C) exhibits the highest resistivity and phase values

SIP laboratory setup

SIP laboratory setup:

- SIP device: SIP04 (Zimmermann et al., 2008)
- Frequency range: from 10 mHz to 45 kHz
- 4-point measurements

Samples from Cervinia:

- Solid rock samples from surface (saturated with water)
- Not shown: loose sediment samples collected from surface, measured on cylindrical plug (9cm length, 3cm diameter) (volumetric water content similar to field conditions)

Temperature setup:

• Temperature range: from +20°C to -40°C

For further details on the laboratory anaylsis, see the talk of Jonas Limbrock:

Textural and mineralogical controls on temperature dependent SIP behavior during freezing and thawing

Comparison field/laboratory

Conclusion

- We observe clear seasonal changes in IP imaging data with an increase in the phase in winter and a decrease in summer, which relate to the seasonal freezing and thawing of the ground reported by borehole temperature data
- The laboratory analysis of the impedance phase spectra exhibit the well-known relaxation behaviour of ice at higher frequencies (1 kHz – 45 kHz). When comparing laboratory and field data, we observe a similar temperature-dependent behaviour in the shape and amplitude of the spectra of the resistance (impedance magnitude) and the impedance phase (polarization) with increasing amplitudes for decreasing temperatures.
- We observe an active layer deepening from July 2020 to September 2020 and highest resistivity and polarization for winter months (January, February, March) than for summer months (July, September, October)
- A clear temperature/phase relation is found for different seasons and depths of the SIP monitoring profile, at freezing temperatures (below 0° C), the resistivity and phase values are higher with a wider range observed for the phase values compared to phase values at positive temperatures
- A combination of low water content (6%) and low temperatures (-4°C) exhibits the highest resistivity and phase values

Outlook

- Quantification of the ice content using SIP field and laboratory data
- SIP monitoring will continue through 2021 \rightarrow thawing period

- Dahlin, T., Leroux, V., & Nissen, J. (2002). Measuring techniques in induced polarisation imaging. Journal of Applied Geophysics, 50(3), 279-298.
- Delaloye, R., & Lambiel, C. (2005). Evidence of winter ascending air circulation throughout talus slopes and rock glaciers situated in the lower belt of alpine discontinuous permafrost (Swiss Alps). Norsk Geografisk Tidsskrift-Norwegian Journal of Geography, 59(2), 194-203.
- Flores Orozco, A., Kemna, A., Binley, A., & Cassiani, G. (2019). Analysis of time-lapse data error in complex conductivity imaging to alleviate anthropogenic noise for site characterization. Geophysics, 84(2), B181-B193.
- Hauck, C., Bach, M., & Hilbich, C. (2008). A 4-phase model to quantify subsurface ice and water content in permafrost regions based on geophysical datasets. In *Proceedings Ninth International Conference on Permafrost, June* (pp. 675-680).
- Hilbich, C. (2010). Applicability of time-lapse refraction seismic tomography for the detection of ground ice degradation. *The Cryosphere Discussions*, 4, 77-119.
- Kemna, A. (2000), Tomographic inversion of complex resistivity: Theory and application, Ph.D. thesis, Ruhr Univ., Bochum, Germany.

11111,

References

- Mollaret, C., Wagner, F. M., Hilbich, C., Scapozza, C., & Hauck, C. (2020). Petrophysical Joint Inversion Applied to Alpine Permafrost Field Sites to Image Subsurface Ice, Water, Air, and Rock Contents. Frontiers in Earth Science, 8, 85.
- Mollaret, C., Hilbich, C., Pellet, C., Flores-Orozco, A., Delaloye, R., & Hauck, C. (2019). Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites. The Cryosphere, 13(10), 2557-2578.
- Orozco, A. F., Kemna, A., & Zimmermann, E. (2012). Data error quantification in spectral induced polarization imaging. Geophysics, 77(3), E227-E237.
- Scapozza, C., Baron, L., & Lambiel, C. (2015). Borehole logging in Alpine periglacial talus slopes (Valais, Swiss Alps). Permafrost and Periglacial Processes, 26(1), 67-83.
- Staub, B., Marmy, A., Hauck, C., Hilbich, C., & Delaloye, R. (2015). Ground temperature variations in a talus slope influenced by permafrost: a comparison of field observations and model simulations. Geographica Helvetica, 70(1), 45.
- Wagner, F. M., Mollaret, C., Günther, T., Uhlemann, S., Dafflon, B., Hubbard, S. S., ... & Kemna, A. (2019, January). Characterization of permafrost systems through petrophysical joint inversion of seismic and geoelectrical data. In Geophysical Research Abstracts (Vol. 21).
- Wicky, J., & Hauck, C. (2017). Numerical modelling of convective heat transport by air flow in permafrost talus slopes. The Cryosphere, 11(3), 1311-1325.