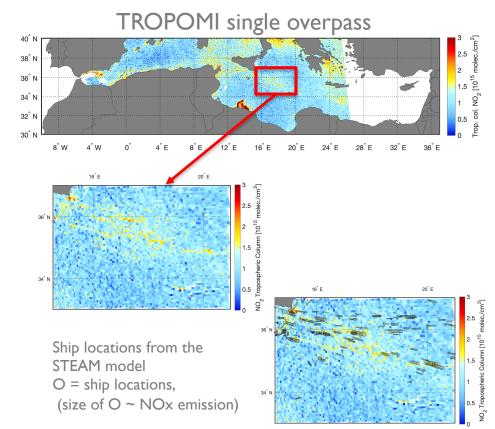


EGU21-14623

Detecting single ship plumes from TROPOMI NO₂ data

Anu-Maija I Sundström¹, Elisa Majamaki², Jukka-Pekka Jalkanen², Iolanda Ialongo¹, and Johanna Tamminen¹

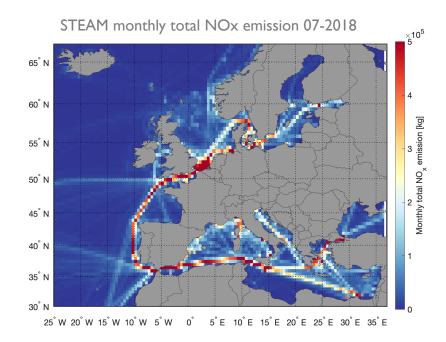
¹ Finnish Meteorological Institute, Space and Earth Observation Centre, Helsinki, Finland ² Finnish Meteorological Institute, Atmospheric Composition Research, Helsinki, Finland


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nr.814893

Can we identify signatures of specific ships from TROPOMI NO₂ observations?

SCIPPER

- Very high spatial resolution of the TROPOMI instrument allows the detection of smaller NO₂ emission sources than any other satellite instrument before.
- The objective of this work is to study whether emission signatures of specific ships can be indentified from TROPOMI NO₂ observations.

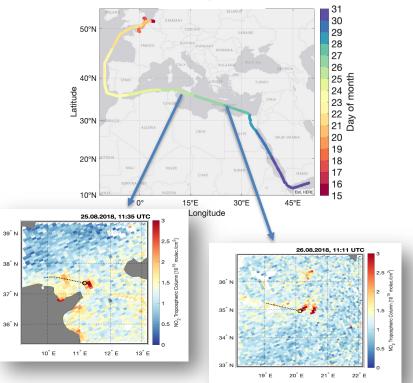


Ship Traffic Emission Assessment Model (STEAM)

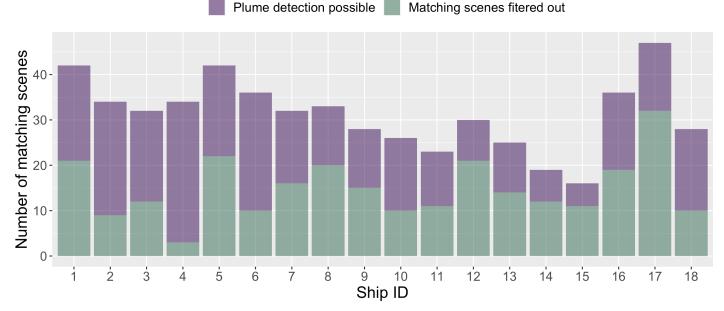
- Model developed at FMI for shipping emissions (Jalkanen et. al, 2009).
- Emission estimates for several pollutants: NO_x , SO_x , CO, CO_2 , EC, OC, Ash, SO_4
 - Gridded datasets

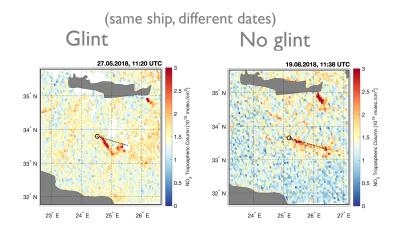
SCIPPER PROJECT

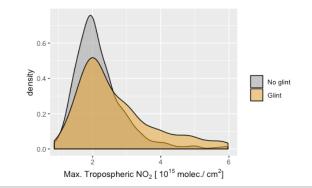
- Vessel-specific data / summaries
- Primary source of vessel activity: Automatic Indentification System (AIS)
- Every vessel is a "unique case": machinery concepts, hull form, fuels, etc.



Comparison of TROPOMI and container ship data

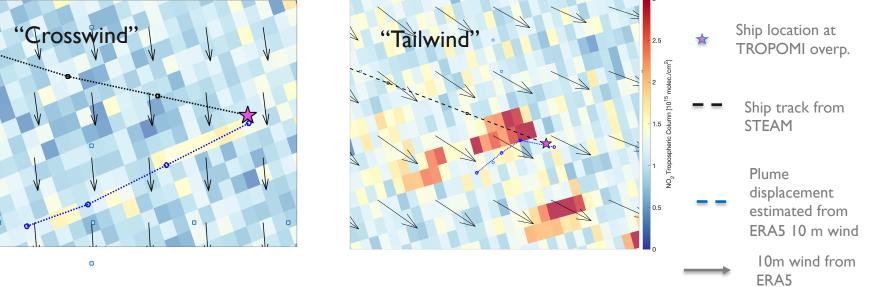

- In this work the focus is on large container ships, that operate between Europe and Asia.
- The information on these individual ships are obtained from the STEAM model.
- Sample TROPOMI NO₂ data along the ships route
- Study period: May-October 2018 and 2019 over the Mediterranean
- STEAM shipping routes for 33 single vessels have been analyzed (7 ships have data for both years)
- Meteorological data is obtained from ERA5.


Number of matching TROPOMI NO₂ scenes and ship locations in May-Oct 2019


- For the possible signature detection matching scenes were further filtered:
 - Cloudy scenes were excluded
 - Cases when ships were at the port or close to the coast under continental outflow were excluded

- For all 33 container ships scenes are found over the Mediterranean, where locally elevated TROPOMI NO₂ is most likely related to the specific ship.
- TROPOMI NO2 values in the ship plumes vary typically around 2.10¹⁵ molec./cm² (enhancement of about 1.10¹⁵ molec./cm²)
- Signatures of large ships in TROPOMI NO₂ seem to be visible both under glint and no glint conditions, but with glint the signature is often more clear.

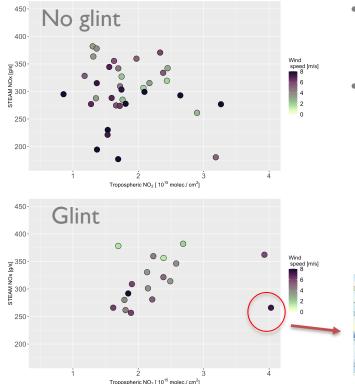
"Maximum" TROPOMI NO₂ in the vicinity of ship location (all ships)

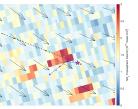


• The observed signatures are affected by the prevailing meteorological and/or viewing conditions, e.g. wind speed, direction, sun glint /no glint.

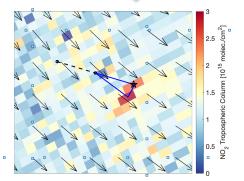
Same ship, different days

- Both days under glint conditions, wind speed is 6 and 8 m/s
- For both cases STEAM emission estimate is 266 g/s, but NO₂ values within the plume areas differ.





Comparison of STEAM NOx emissions vs. TROPOMI NO₂


- Defining TROPOMI NO₂ values for comparison is not straightforward, different colocation methods affect the results.
- In these examples the TROPOMI value is defined as the mean of 3 highest NO₂ observations, that are found within the area bordered by the ship track (I hour backwards) and the plume displacement.

"Outlier": high TROPOMI NO₂, "lower" STEAM NOx

Strong

tailwind

Reference:

J.-P. Jalkanen, A. Brink, J. Kalli, H. Pettersson, J. Kukkonen, and T. Stipa: A modelling system for the exhaust emissions of marine traffic and its application in the Baltic Sea area, Atmos. Chem. Phys., 9, 9209–9223, 2009.

Acknowledgements:

This work is funded by the SCIPPER project (H2020 grant agreement Nr. 814893)

