Low thermal conductivity of Earth's core with implications for the geodynamo and the age of inner core

Wen-Pin Hsieh (謝文斌)

Institute of Earth Sciences, Academia Sinica, Taiwan, ROC

EGU General Assembly 2021 April 26, 2021

Acknowledgements

Collaborators: Jung-Fu Lin (*U Texas*) Alex Goncharov (*Carnegie*)

Frédéric Deschamps (*Academia Sinica*) Stephane Labrosse (*CNRS*) and many others...

Mapping the thermal profile in Earth's interior: Deep Earth Thermal Conductivity Anatomy (DETCA)

Seismic Tomography

www.olcf.ornl.gov/2017/03/28/a-seismic-mapping-milestone

Mapping the thermal profile in Earth's interior: Deep Earth Thermal Conductivity Anatomy (DETCA)

Seismic Tomography

Thermal Conductivity Anatomy

www.olcf.ornl.gov/2017/03/28/a-seismic-mapping-milestone

Mapping the thermal profile in Earth's interior: **Deep Earth Thermal Conductivity Anatomy (DETCA)**

Thermal Conductivity Anatomy

As of April 2021

Combine ultrafast pump-probe with diamond cells to precisely measure thermal conductivity under extremes

Hi Inner Core, how old are you?

Science 342, 431 (2013)

The lower the thermal conductivity, the slower the cooling: *inner core is older*

Lower core thermal conductivity delays cooling and powers dynamo

- Extrapolated RT data suggest a low iron thermal conductivity: inner core would not be as young as sub-Gyr
- Thermal conductivity of liquid outer core would be even lower!

Low core thermal conductivity suggests the inner core could be older than 2.5 Gyr

Wen-Pin Hsieh et al., Nat. Commun. 11, 3332 (2020)

Low core thermal conductivity may enable geodynamo to be operated by purely thermal convection

Wen-Pin Hsieh et al., Nat. Commun. 11, 3332 (2020)

Summary

- Combination of **DAC**, **TDTR**, **and heating techniques** is powerful to study thermal conductivity of deep Earth minerals at extreme conditions and to tackle very important, unanswered geophysical questions in the deep Earth.
- Need more and closer collaborations with *theoreticians*, geodynamicists, seismologists, and geochemists to have a more comprehensive understanding of the core's complex thermo-chemical structure and dynamics.

