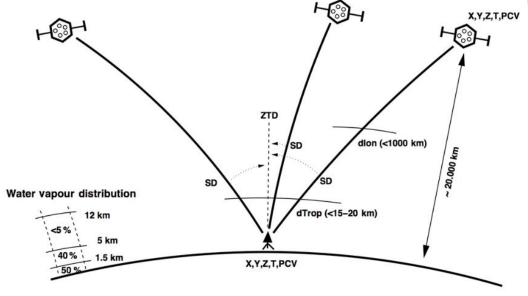


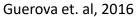
Tropospheric delay parameters derived from GNSS-tracking data of a fast moving fleet of trains

Matthias Aichinger-Rosenberger

EGU 2021

Troposphere:


- Introduces delay on GNSS signals
- Dependent on pressure, temperature and water vapour
- Error source for positioning but valuable signal for meteorology


Zenith Total Delay (ZTD)

- Common parameter in GNSS processing
- Represents signal delay in zenith direction
- Can be split up for hydrostatic (ZHD) and wet part (ZWD)
- Proportional to water vapor content
- Beneficial observation for Numerical Weather Prediction (NWP)

Processing strategy:

- Common: Double-difference approach, Estimation from (reference) stations providing high-quality observations in GNSS analysis (together with e.g. station coordinates)
- PPP processing: more and more studies, lower computational power, but also lower accuracy

• Main goal:

Derive (reasonable) tropospheric parameters from (low-cost/single-frequency) GNSS data of a fleet of fast moving trains

• Main idea:

Use trains as meteorological sensors ----> huge number travelling all over Austria -----> very good horizontal/temporal resolution

- Questions:
 - Reliable estimation of tropospheric delays possible?
 - Which data processing scheme(s)?
 - Which temporal and spatial resolution can be achieved/used when processing a larger fleet of trains?
 - What is the quality of the derived data and is it sufficient to be incorporated into an NWP data assimilation system?
 - Can the estimation and assimilation be carried out in a (near) real-time (NRT) operational mode?

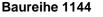
Data from **ÖBB Greenlight** project

- ublox dual-system
 - Currently GPS + GLONASS
 - in future GPS + Galileo
- Single-frequency (SF) observations
- 1 Hz update rate
- Thankfully provided by ÖBB!

Data from **EPOSA reference station network**:

- Dual-frequency (DF) data
- Use for SEID algorithm (ionospheric mitigation, Deng et al, 2009)

Copyright: DI (FH) Manfred Stättner, ÖBB Infra



Status shown here: May 2019, till today ~ 1400 trains equipped

ÖBB-Produktion GmbH

Ausgerüstet: 23 u. 40 StückAusgerüstet: 54 Stück

Baureihe 1016/1116

Ausgerüstet: 1 Stück

Baureihe 1116 - RailJet Baureihe 1063/1163 Baureihe 2070

Ausgerüstet: 10 Stück

Baureihe 1216

Ausgerüstet: 4 Stück

Baureihe 1064

Prototyp Einbau in Arbeit

Baureihe 2016 Baureihe 4744/4746 Baureihe 5022

ÖBB-Personenverkehr AG

Ausgerüstet: 8 u. 65 Stück

Baureihe 4023/4024/4124Baureihe 4020

Ausgerüstet: 1 Stück

ÖBB-Infrastruktur AG

Baureihe 1064

Ausgerüstet: 4 Stück

Baureihe 5047

Ausgerüstet: 2 Stück

- Kinematic PPP approach
- Software available:
 - CSRS PPP online service
 - GAMP (GFZ, only DF) -----> use SEID approach for DF generation
 - PPP-Wizard (CNES)
- Ionosphere mitigation:
 - SF-PPP: GIM maps or EGNOS corrections
 - DF-PPP: DF generation using Satellite-specific Epoch-differenced Ionospheric Delay (SEID) algorithm
- Pre-processing:
 - Cycle slip detection (DF: MW-LC, SF: Time-differencing)
 - Multipath analysis
- Smoothing of time series:
 - Moving-average filtered solutions

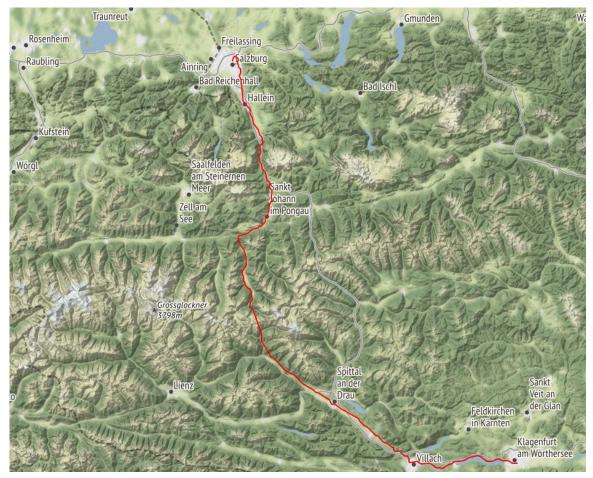
Processing schemes:

- **CSRS-PPP (CSRS-PPP):** online PPP service, SF/DF data, Seq. least squares estimation
- GAMP (SGAMP): GFZ, DF data, use with SEID model, Kalman Filter
- **PPP-Wizard (PPPW):** CNES, SF/DF data, Kalman Filter
- PPP-Wizard with height constraint (PPPW-HC):
 - Use database of Austrian railway tracks (thankfully provided by ÖBB)
 - Constrain height coordinate using heights from database
 - Search nearest point to 2D GNSS position in database and take height from there
 - These are heights from pylons (not antenna heights!) ----> correction needed!
 - Problem: correction unknown ---> use median of height differences between pylons and GNSS antenna (dH, ~4 m)
 - Criterion for application:

 $|H_{GNSS} - (H_{RDB} + dH)| > 0.1m$

Case studies: Overview and PPP settings

Test case	Date	Route	Processing
CS1	11.05.2017	Salzburg - Vienna airport	CSRS-PPP/PPP-Wizard
CS2	28.09.2017	Salzburg - Klagenfurt	CSRS-PPP/PPP-Wizard/SGAMP
CS3	29.11.2019	Innsbruck - Wörgl - Schwarzach/St.Veit - Liezen	CSRS-PPP/PPP-Wizard
CS 4	01.12.2019	Innsbruck - Wörgl - Schwarzach/St.Veit - Liezen - Graz	CSRS-PPP/PPP-Wizard

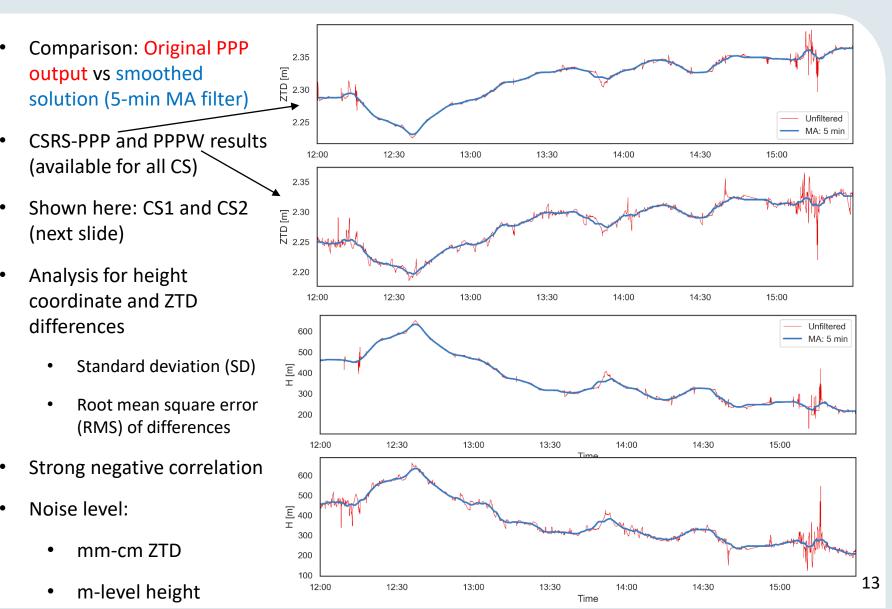


CS1 : Track plot from CSRS-PPP processing

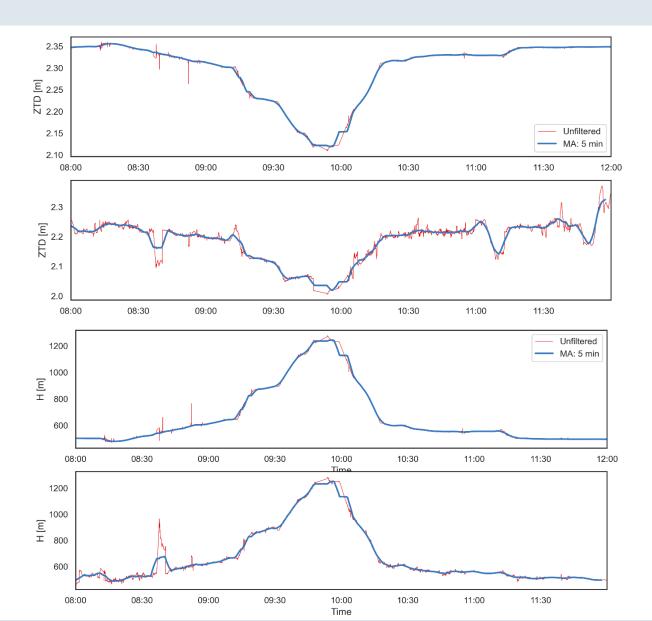
Track plot from CSRS-PPP processing

CS3 and CS4: Innsbruck – Wörgl – Liezen - Graz

Track plot from CSRS-PPP processing



Parameter	CSRS-PPP	SGAMP	PPPW/PPPW-HC
Mode	Kinematic SF-PPP	Kinematic DF-PPP	Kinematic SF-PPP
GNSS		GPS + GLONASS	
Ambiguities	Float		
Orbits/Clocks	IGS Final		
lonosphere	GIM	SEID/IF-LC	EGNOS
ZHD (a-priori)	VMF1	Saastamoinen	
σ_{Code}	1-10 m		
σ_{Phase}	0.1-0.5 m		
$\sigma_{Position}$	10 m		
σ_{zwd}	0.005 m/sqrt(s)		


Noise analysis of PPP solutions: CS1

Noise analysis of PPP solutions: CS2

GEO

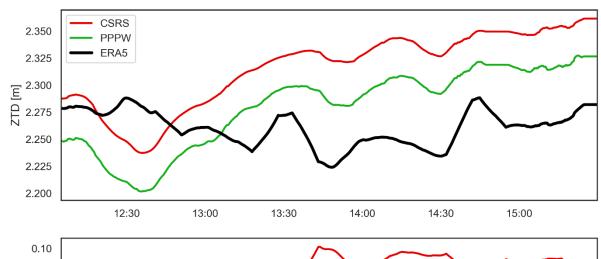
Data: ERA5 reanalysis

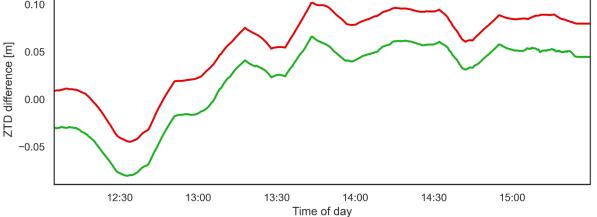
- Newest reanalysis of ECMWF
- Horizontal resolution: 31 km, 37 vertical levels, temporal resolution : 1 hour
- ERA5-ZTD in good agreement with GNSS-ZTD in former studies (only few as ERA5 = new dataset)

Methodology:

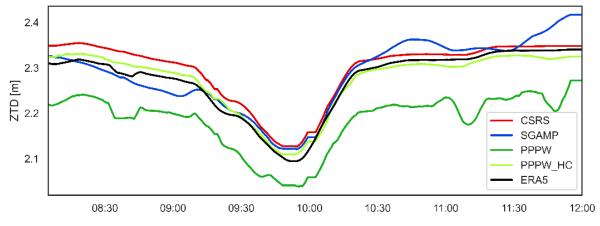
 Refractivity from pressure, temperature, relative humidity (Essen and Froome, 1951)

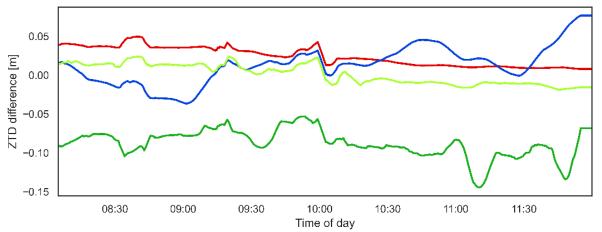
$$N_{tot} = k_1 \frac{p}{T} - k_2 \frac{e}{T} + k_3 \frac{e}{T^2},$$

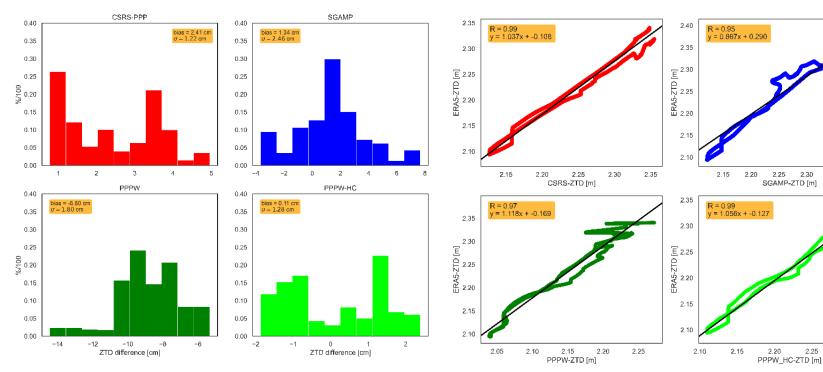

- ZTD through vertical integration where $k1 = 77.689KhPa^{-1}$, $k2 = 71.2952KhPa^{-1}$ and $k3 = 375463KhPa^{-1}$
- Correction for model top (Saastamoinen, 1972)
- 3D interpolation to train track (lat,lon,time)

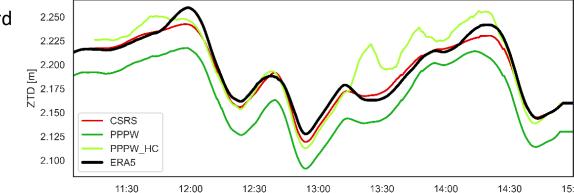

$$ZTD_m = 10^{-6} \cdot \int N_{tot}$$

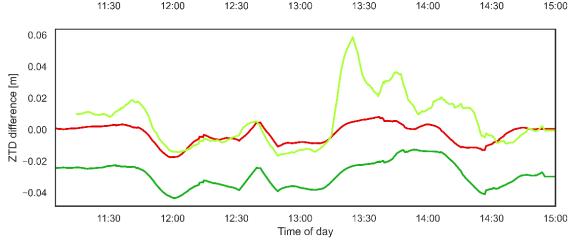
- GNSS solutions agree well
- Contrary patterns between ERA5 and GNSS in first hour
 - ERA5 errors?
 - Local water vapour anomaly?
- Overall correlation distorted from first hour
- Large improvements when analysing only 13:30 – 15:30






- Correlation between GNSS-ZTD and ERA-ZTD very high
- Larger bias (~5-10 cm) for PPPW solution
- PPPW-HC solution performs best (only ~ 1 mm bias)
- SGAMP with good performance (bias = 1.34 cm)

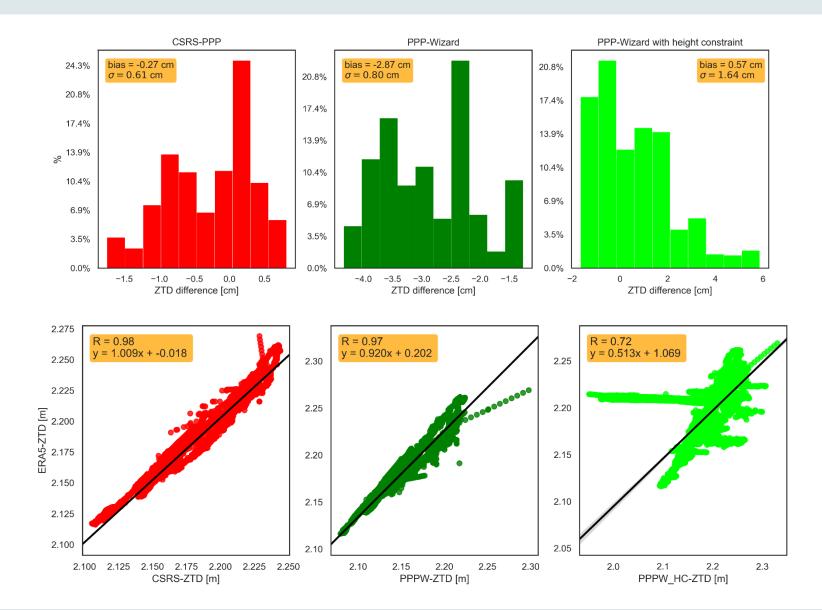



2.35 2.40

2.30

Findings:

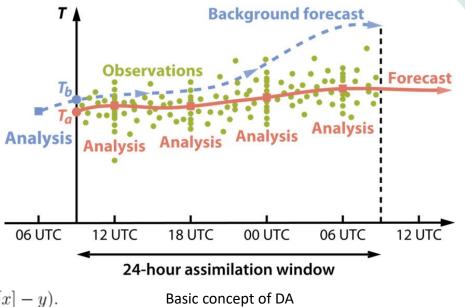
- High correlation again
- Larger offset for PPP-Wizard solution
- CSRS-PPP with best
 performance
- Problems of PPPW-HC around 13:30 – 14:30
 - Interpolation errors? (wrong points in DB chosen)



Methodology: Data assimilation

Basics:

- **NWP = initial value problem**, therefore strongly relies on quality of initial model state
- Data Assimilation (DA) = process of obtaining the statistically best combination between model state and the available observations
- Considering the uncertainty of both observations and model predictions


$$I(x) = (x - x_b)^T B^{-1}(x - x_b) + \frac{1}{2}(H[x] - y^T)R^{-1}(H[x] - y).$$

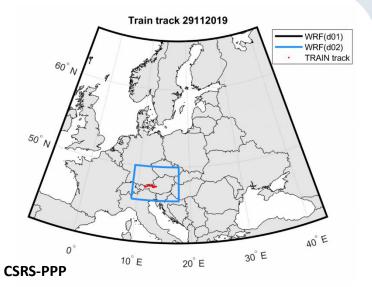
WRF (Weather Research and Forecasting) Model:

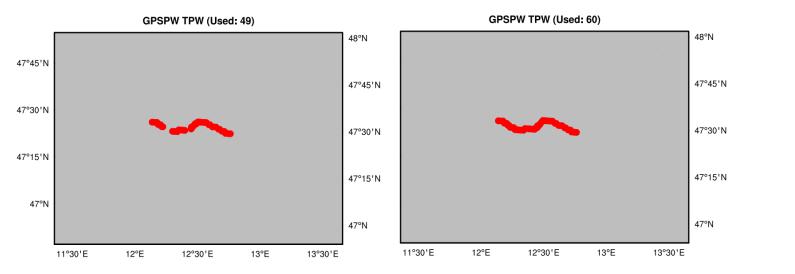
- Open-source community model
- World-wide usage in NWP and other communities

Setup:

- WRF-DA system: 4D-Var
- Boundary conditions: ERA5

Parameter	Setting
Periods	CS2/CS3 (1 h each)
Horizontal resolution (d01,d02,d03)	30/10/3 km
Background data and boundary conditions	ERA5
Observation interval (GNSS-ZTD)	60 s
Assimilation method	4D-Var
Assimilation window	1 h
Observation operator	GPSZTD
Observation error (pre-defined in WRFDA)	0.5 cm
Error threshold	2.5 cm





• Overall very promising results

PPPW

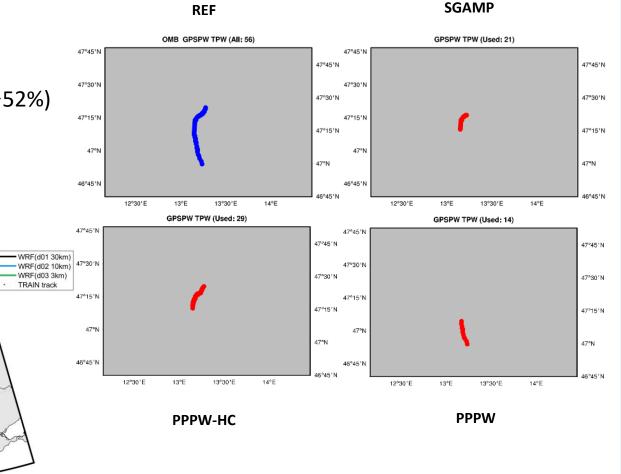
- CSRS-PPP: 100 % of observations accepted
- PPPW: 82 % of observations accepted

23

30° E

- Huge differences compared to CS3
- CSRS-PPP: none!
- PPPW-HC (29/56, ~52%)
- SGAMP: 21 (37.5%)
- PPPW: 14 (25%)

Train track 28092017


20[°] E

60° A

50°

0°

10° E

Required adaptations:

- 1. Data transmission: some sort of regular data transmission has to be set up (best a real-time stream, RTCM etc..)
- 2. Orbit/clock products: Real-time streams/ultra-rapid orbits/clocks instead of final products (investigate influence on quality of results!)
- **3. Output interval:** To be refined, also in discussion with end users (NWP developers). This study: 1 min used

Suggestions for GNSS processing:

- 1. SF-PPP approach:
 - PPP-Wizard software: open-source C++ library, fully programmable, real-time capability
 - Extend for needed features:
 - better multipath/cycle slip management
 - VMF integration
 - Constrained PPP-mode (height, ionosphere,...)

2. DF-PPP approach:

- PPP-Wizard or GAMP software
- SEID algorithm directly in PPP (every epoch L2 is build and IF-LC is calculated)

3. VieVS PPP (raPPPid):

- Extension: Cycle slip detection, appropriate settings for kinematic processing
- Both DF and SF mode possible

Requirements for NWP usage

- DA configuration:
 - This study: 4D-Var, others also possible (depending on NWM used)
 - Hourly GNSS-ZTD data from reference typically arrive too late
 - Output interval under one hour for sure beneficial

Extension to advanced tropospheric parameters

- Slant delays and horizontal gradients
- Gradients:
 - Beneficial for GNSS-ZTD quality (literature) ----> not for this study (no impact)
 - Main challenge is interpretation of results, relative movement of train/weather has to be acknowledged

Data processing:

- Reasonable tropospheric parameters (ZTD) can be derived from train data
- Noise of PPP solutions in expected range for height, low for ZTD (filter settings!)
- Noise generally lower for CSRS-PPP compared to PPPW (often by factor 10)
- 3 4 processing schemes/software packages possible to use
- Pronounced offset between e.g. CSRS-PPP and PPPW, but correlation very high

Validation:

- Deviations from 1 mm 8 cm depending on test case and software package, in general higher than required accuracy
- Nevertheless, deviations manifest themselves as (constant) bias, which might be removed in DA algorithm -----> how to do this for kinematic data???
- Different packages perform better for different test cases -----> no recommendation given
- SEID algorithm performs well, but pre-processing difficult (cycle slips/data gaps/...)

Assimilation:

- First assimilation tests successful, quality check in WRF was passed for 30 -100 % of observations (significantly different for the two test cases)
- Open questions:
 - Assimilation interval?
 - Bias correction for kinematic data?

NRT operational processing:

- NRT processing is possible but a number of adaptations have to be implemented
- Quality of results is expected to be lower due to usage of real-time orbit/clock products
- Benefit for real-time NWP applications nevertheless expected to be high
- High number of trains might be processed -----> very good horizontal resolution of dataset
- With larger number of trajectories available, full DA runs can be produced and verified