

Comparison of soil CO, emissions from three different tillage methods on chernozem soil

Márton Dencső ^(1,*), Ágota Horel⁽¹⁾, Zsófia Bakacsi⁽¹⁾, Eszter Tóth⁽¹⁾ ⁽¹⁾ Institute for Soil Sciences, Centre for Agricultural Sciences, Budapest, Hungary *dencso.marton@atk.hu

Abstract

In this study we investigated the soil CO_2 We investigated the soil CO_2 emission of mouldboard ploughing, shallow emission of a conventional (mouldboard cultivation and notillage in Józsefmajor Experimental and Training Farm, ploughing, 28-30 cm tillage depth) and two Hungary (MATE University, Gödöllő) on a calcic chernozem under conservational (shallow cultivation, 18-20 cm winter oat cropping in 2020. tillage depth and notillage, 0 cm tillage depth) We measured CO_2 emissions in 7 replicates/treatment with EGM-5 IRtillage treatments of a long-term experiment analyzer (PPSystems, USA). Measurement time was 2 minutes at each operating since 2002. sampling points.

 \sim The aim of this study was to examine the We measured soil temperature and soil water content near every CO₂ differences between soil CO₂ emission of sampling points with Hydrosense 2 soil moisture probe (Campbell conventional and conservational tillage Scientific, USA) and a soil thermometer (PPSystems, USA). main We determined soil organic carbon content (SOC) with wet chemical techniques determine the and analysis in 3 replicates/treatment during spring and fall. environmental drivers.

Findings

Fig 1. CO₂ emission of soils under mouldboard ploughing, shallow cultivation and notillage techniques and mean soil temperature (harvest and tillage are indicated with dashed lines

Table 1. Mean soil CO₂ emission of the different treatments over time (a,b indicate significant differences)

CO ₂ emission of soil (mg m ⁻² s ⁻¹)					
Treatment	S. cultivation	Notillage	M. ploughing		
Whole year	$0.115{\pm}0.083^{a}$	$0.119 \pm 0.100^{a,b}$	$0.099{\pm}0.089^{b}$		
Growing season	$0.106{\pm}0.088^{a}$	$0.104{\pm}0.088^{a}$	$0.096{\pm}0.090^{a}$		
After harvest	$0.136{\pm}0.109^{a}$	$0.124{\pm}0.76^{a}$	$0.102{\pm}0.088^{b}$		
After tillage	$0.069{\pm}0.038^{a}$	$0.059{\pm}0.033^{a}$	$0.034{\pm}0.027^{b}$		

Methods

There was significant difference (p<0.05) between the mean soil CO₂ emissions of shallow cultivation and mouldboard ploughing during the whole year, higher emission occured in shallow cultivation

No differences were found (p>0.05) between the treatments during the growing season Both of the conservational treatments had significantly higher (p<0.05) soil CO₂ emissions than the mouldboard ploughing during the after harvest and the after tillage periods

Fig 2. Soil organic carbon (SOC) content in mouldboard ploughing, shallow cultivation and notillage treatments

Vegetation had a balancing effect on soil CO₂ emissions of the tillage treatments during the growing season Higher soil organic carbon content might be responsibe for the higher soil CO₂ emissions in the case of conservational tillage methods after harvest

Fig 3. Temperature dependency of soil CO₂ emission (r² are included)

	0.35	Т	N.4
.s ⁻¹)	0.30	-	М. S. (
g m ⁻²	0.25	+	No
(m	0.20	-	
ssion	0.15	-	
emi	0.10	-	
CO_2	0.05	-	
	0.00	+	
		0	

- with soil temperature
- temperature

In 2020, soils under conservational tillage techniques had higher SOC content soil than under mouldboard ploughing technique

Mouldboard ploughing
Shallow cultivation
Notillage

Soil temperature (°C)

• Soil CO₂ emission had a non linear correlation

• Soil CO₂ emission under conventional tillage had week correlation ($r^2=0.36$) on soil temperature

• Soil CO₂ emission under conservational tillages had moderate correlation ($r^2=0.51-0.62$) on soil

• Soil CO₂ emission had weak to no correlation $(r^2=0.01-0.15)$ with soil water content during experimental time (not shown in figure)