European Geosciences Union General Assembly 2021 Online | 19-30 April 2021

vEGU21: Gather Online

ALMA MATER STUDIORUM Università di Bologna

Recent spatio-temporal dynamics of floods of record across Europe

Fabio Arletti⁽¹⁾, Simone Persiano⁽¹⁾, Miriam Bertola⁽²⁾, Juraj Parajka⁽²⁾, Günter Blöschl⁽²⁾, Attilio Castellarin⁽¹⁾

 ⁽¹⁾ DICAM - University of Bologna, Bologna, Italy
⁽²⁾ Institute of Hydraulic Engineering and Water Resources Management, Vienna University of Technology, Vienna, Austria

Presenting Author: **Attilio Castellarin** DICAM - University of Bologna, Bologna, Italy

Motivation

Steady increase of economic losses and social consequences caused by flood events in Europe

Scientific community is making an effort to better understand **recent flood dynamics** and their evolution in space and time.

Observed river flood discharges in the past five decades (1960-2010) in Europe

- <u>Blöschl et al. (2017, Science)</u>: clear patterns of change in flood timing
- <u>Blöschl et al. (2019, Nature)</u>: significant changes in flood magnitudes

Aims and dataset

Aim: to analyze the **spatial** and **temporal** variability of the **specific flood of record**

SFOR = Q_{max}/A

for a dataset of Annual Maximum Series (AMS) of peak flow discharges observed in **1820-2016** for **3413 catchments**

Spatial dynamics

- 1 Northwestern Europe
- 2 Southern Europe
- 3 Eastern Europe

Temporal dynamics

- Overall period (1820-2016)
- Sub-period **1957-1986**
- Sub-period **1987-2016**

Analyses in terms of:

CLICK ON THE BUTTONS BELOW

SFOR and catchment area

Changes in SFOR in the last decades

Non-stationarity with theory of records

Atlas of interpolated SFOR across Europe

SFOR and catchment area

SFOR and catchment area

SFOR and catchment area

European Geosciences Union General Assembly 2021 | Online | 19-30 April 2021

Back to Aims and dataset

Changes in SFOR values over the last 30-60 years

SFOR values are mainly concentrated in the **last 30 years** (i.e. 1987-2016), especially in the area of **Central Europe**

Smaller catchments show on average a more recent occurrence of the record flood

Changes in SFOR values over the last 30-60 years

European Geosciences Union General Assembly 2021 | Online | 19-30 April 2021

[slide 07]

Changes in SFOR values over the last 30-60 years

Back to Aims and dataset Changes in SFOR values over the last 30-60 years **Go to Conclusions** SFOR values changes $Q_{max\,1987-2016}$ from **1957-1986** $Q_{max\,1957-1986}$ to 1987-2016 **3** - Eastern Europe Generalized decrease (for $A > 350 \text{ km}^2$) 100 EASTERN EUROPE 380 gauged catchments Q_{max}/A 1957-1986 [m³ / (s km²)] Moving average (window=50) of Q_{max}/A 1957-1986 Q_{max}/A 1987-2016 [m³ / (s km²)] 10 Moving average (window=50) of Q_{max}/A 1987-2016 Country boundaries 1957-1986 Qmax 1987-2016 / Qmax 1957-1986 [-] < 0,50 0.1 0,50 - 0,75 0,75 - 1,00 1,00 - 1,00 0.01 1,00 - 1,25 1987-2016 2 1,25 - 2,00 > 2,00 **350** km² 1000 10 100 10000 100000 1000000 No data available Catchment area [km²]

(A 1987-2016 [m³ / (s km²)]

/A 1957-1986, Q_n

ð

European Geosciences Union General Assembly 2021 | Online | 19-30 April 2021

[slide 09]

1 - Northwestern Europe

AMS length [years] (1820-2016)

AMS length [years] (1881-2016)

Atlas of interpolated SFOR across Europe

Continuous spatial representation of SFOR values

Atlas of interpolated SFOR across Europe

Continuous spatial representation of SFOR values

Interpolation of the 3413 observed SFOR values at ~30 000 elementary catchments provided by the JRC (Joint Research Centre) of the European Commission.

Top-kriging (*Skøien et al.,* 2006) Geostatistical procedure Prediction at ungauged river crosssections as linear combinations of the empirical information collected at *neighbouring* gauging stations:

- **drainage area** as non-point support
- ✓ *nested structure* of catchments (stream-network topology)

Atlas of interpolated SFOR across Europe

Back to Aims and dataset

Go to Conclusions

Conclusions

- The dependence of the specific flood of record (SFOR) on drainage area is confirmed across Europe (as expected, SFOR decreases with increasing drainage area).
- Floods of record are mainly concentrated in the last 30 years (i.e. 1987-2016), especially in the area of central Europe. Smaller catchments (A < 100 km²) show on average a more recent occurrence of the record flood.
- The changes observed in the floods of record over the last 30-60 years are consistent with what observed in previous studies in terms of magnitude (*Blöschl et al., 2019, Nature*): increase in northwestern Europe, decrease in southern and eastern Europe.
- Analyses with the theory of record-breaking processes accounting for spatial correlation: evidence of significant non-stationarity in northwestern Europe, associated with an increase in magnitude (consistent with <u>Blöschl et al., 2019, Nature</u>). Less evident changes in the other two macro-regions.
- Atlas of interpolated SFOR across Europe produced by using a geostatistical procedure (e.g. top-kriging) that is hydrologically consistent in terms of downstream-upstream relationship and drainage area size.

Back to Aims and dataset

The end

ALMA MATER STUDIORUM Università di Bologna

THANK YOU FOR YOUR ATTENTION

Attilio Castellarin - attilio.castellarin@unibo.it Simone Persiano - simone.persiano@unibo.it

DICAM – University of Bologna

www.unibo.it

Theory of record-braking processes

Record event: event whose magnitude exceeds or is exceeded by all previously recorded event

The first observation of a series is defined to be a record event

Reference literature:

Chandler (1952), Arnold et al. (1998), Vogel et al. (2001)

Theoretical expected value of the number of record events in an *n*-year sample (serially independent process)

Approximate confidence intervals in a region with spatially <u>correlated</u> flood series

Approximate confidence intervals in a region with spatially <u>uncorrelated</u> flood series

Non-stationarity: when sample estimate falls outside the approximate confidence intervals

<u>Vogel et al. (2001)</u> applied the theory of recordbreaking processes for identifying nonstationarity in hydrological records in the USA, highlighting the importance of **accounting for spatial correlation** (which can broaden the confidence intervals).

Back to the analyses